Looks different

Calculus Level 5

0 1 x 2 + x + 1 x 4 + x 3 + x 2 + x + 1 d x = π a + b a a a \int\limits_0^1\frac{x^{2}+x+1}{x^{4}+x^{3}+x^{2}+x+1}dx=\frac{\pi\sqrt{a+b\sqrt{a}}}{a\sqrt{a}} find a + b a+b .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Feb 1, 2016

Factorising the denominator, and applying partial fractions, the integral is equal to 1 + 5 5 0 1 1 2 + ( 1 5 ) X + 2 X 2 d X 1 5 5 0 1 1 2 + ( 1 5 ) X + 2 X 2 d X \frac{1+\sqrt{5}}{\sqrt{5}}\int_0^1 \frac{1}{2 + (1 - \sqrt{5})X + 2X^2}\,dX - \frac{1-\sqrt{5}}{\sqrt{5}}\int_0^1 \frac{1}{2 + (1 - \sqrt{5})X + 2X^2}\,dX and these two subintegrals can be evaluated as inverse tangents. From here to the answer of π 5 + 2 5 5 5 \frac{\pi \sqrt{5 + 2\sqrt{5}}}{5\sqrt{5}} is a straightforward, if lengthy, calculation. The answer is 5 + 2 = 7 5 + 2 \,=\, \boxed{7} .

Shivam Jadhav
Jan 31, 2016

Multiply top and bottom by ( x 1 ) -(x-1) , we have 0 1 1 x 3 1 x 5 d x \displaystyle \int_0^1 \frac{1-x^3}{1-x^5} \, dx .

Notice that the integrand can be written as a sum of a convergent geometric series with common ratio x 5 x^5 .

0 1 1 x 3 1 x 5 d x = 0 1 r = 0 ( 1 x 3 ) x 5 r d x = r = 0 0 1 ( x 5 r x 3 + 5 r ) d x = r = 0 ( 1 5 r + 1 1 5 r + 4 ) = r = 0 3 25 r 2 + 25 r + 4 ( ) \begin{aligned} \displaystyle \int_0^1 \frac{1-x^3}{1-x^5} \, dx &=& \displaystyle \int_0^1 \displaystyle \sum_{r=0}^\infty (1-x^3) x^{5r} \, dx \\ \displaystyle &=& \sum_{r=0}^\infty \int_0^1 (x^{5r} - x^{3+5r} ) \, dx \\ \displaystyle &=& \sum_{r=0}^\infty \left( \frac1{5r+1} - \frac1{5r+4}\right ) \\ \displaystyle &=& \sum_{r=0}^\infty \frac3{25r^2+25r+4} \qquad (\star) \\ \end{aligned} We consider the logarithmic differentiation of the Weiestrass Product:

cos ( π x ) = n = 0 ( 1 4 x 2 ( 2 n + 1 ) 2 ) \displaystyle \cos(\pi x) = \prod_{n=0}^\infty \left( 1 - \frac{4x^2}{(2n+1)^2} \right)

to get

n = 0 1 ( 2 n + 1 ) 2 ( 2 x ) 2 = π 8 x tan ( π x ) ( ) \displaystyle \sum_{n=0}^\infty \frac1{(2n+1)^2 - (2x)^2} = \frac{\pi}{8x} \tan(\pi x ) \qquad (\star \star) Notice that 3 25 r 2 + 25 r + 4 = 12 25 1 ( 2 r + 1 ) 2 ( 2 3 10 ) 2 \frac3{25r^2+25r+4} = \frac{12}{25} \cdot \frac1{(2r+1)^2 - \left (2\cdot \frac3{10} \right)^2} . Thus x = 3 10 x=\frac3{10} for ( ) (\star \star) .

Hence, the integral in question equals to 12 25 π 8 3 / 10 tan ( π 3 10 ) = π 5 tan ( 3 10 π ) \dfrac{12}{25} \cdot \dfrac{\pi}{8\cdot 3/10} \tan\left(\pi \cdot \dfrac3{10}\right) = \dfrac\pi5 \tan\left(\dfrac3{10}\pi\right) .

Now, we just need to evaluate tan ( 3 10 π ) \tan\left(\frac3{10}\pi\right) . Apply the identity tan ( x ) = 1 cos ( 2 x ) 1 + cos ( 2 x ) \tan(x) = \sqrt{\frac{1-\cos(2x)}{1+\cos(2x)}} for x = 3 10 π x = \frac3{10}\pi .

This means we need to find what is the value of cos ( 3 5 π ) \cos\left(\frac35\pi \right) . Let y y denote this value. Because cos ( 1 5 π ) = cos ( 4 × 1 5 π ) \cos\left(\frac{1}5\pi\right) = -\cos\left( 4\times \frac15\pi \right) . Apply the double angle formula twice yields cos ( 1 5 π ) = 1 + 5 4 \cos\left( \frac15\pi\right) = \frac{1+\sqrt5}4 . Apply the triple angle formula to get y = 1 5 4 y = \frac{1-\sqrt5}4 .

Substitution yields the answer of π 5 + 2 5 125 0.8648 \displaystyle \pi \sqrt{\dfrac{5+2\sqrt5}{125}} \approx 0.8648 \ \square .

Hence a + b = 7 a+b=7 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...