Looks difficult

Geometry Level 3

lim n [ tan 1 ( 1 2 ) + tan 1 ( 1 8 ) + tan 1 ( 1 18 ) + + tan 1 ( 1 2 n 2 ) ] = ? \large \lim \limits_{n\to \infty }\left[ \tan^{-1}\left( \frac{1}{2} \right) + \tan^{-1}\left( \frac{1}{8} \right) + \tan^{-1}\left( \frac{1}{18} \right) +\ldots+ \tan^{-1}\left( \frac{1}{2n^{2}} \right) \right] = \ ?

0 not exist \infty π 4 \frac {\pi}{4} 1 -\infty π \pi 2 \sqrt {2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Using the arctangent addition formula , we see that

arctan ( 1 2 k 2 ) = arctan ( 2 4 k 2 ) = \arctan\left(\dfrac{1}{2k^{2}}\right) = \arctan\left(\dfrac{2}{4k^{2}}\right) =

arctan ( ( 2 k + 1 ) ( 2 k 1 ) 1 + ( 2 k + 1 ) ( 2 k 1 ) ) = arctan ( 2 k + 1 ) arctan ( 2 k 1 ) . \arctan\left(\dfrac{(2k + 1) - (2k - 1)}{1 + (2k + 1)(2k - 1)}\right) = \arctan(2k + 1) - \arctan(2k - 1).

Summing from k = 1 k = 1 to k = n , k = n, we have

( arctan ( 3 ) arctan ( 1 ) ) + ( arctan ( 5 ) arctan ( 3 ) ) + ( arctan ( 7 ) arctan ( 5 ) ) + (\arctan(3) - \arctan(1)) + (\arctan(5) - \arctan(3)) + (\arctan(7) - \arctan(5)) +

. . . . + ( arctan ( 2 n 1 ) arctan ( 2 n 3 ) ) + ( arctan ( 2 n + 1 ) arctan ( 2 n 1 ) ) . .... + (\arctan(2n - 1) - \arctan(2n - 3)) + (\arctan(2n + 1) - \arctan(2n - 1)).

As can be seen, this is a telescoping sum, with terms canceling pairwise, leaving us

with arctan ( 2 n + 1 ) arctan ( 1 ) . \arctan(2n + 1) - \arctan(1). The given limit then becomes

lim n ( arctan ( 2 n + 1 ) arctan ( 1 ) ) = π 2 π 4 = π 4 . \lim_{n \rightarrow \infty} (\arctan(2n + 1) - \arctan(1)) = \dfrac{\pi}{2} - \dfrac{\pi}{4} = \boxed{\dfrac{\pi}{4}}.

Clearly explained, thank you very much!

Jeffrey Li - 5 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...