Definite Logarithm

Calculus Level 4

0 1 ln ( 1 x + 1 + x ) d x = 1 A ln ( B ) 1 C + π D \large \displaystyle\int_0^1 \ln\left(\sqrt{1-x} + \sqrt{1+x}\ \right)\ \mathrm{d}x= \dfrac{1}{A}\ln(B) - \dfrac{1}{C} + \dfrac{\pi}{D}

If A , B , C , D A,B,C,D are positive integers, where B B is not a perfect power, evaluate A + B + C + D A+B+C+D .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Habeen Chang
Oct 10, 2015

We start by using the logarithmic identity log b ( x d ) = d log b ( x ) \log_b (x^d) = d \log_b (x) . Using this, we can write the integrand as 1 2 ln ( 1 x + 1 + x ) 2 \frac{1}{2} \ln \left( \sqrt{1 - x} + \sqrt{1 + x} \right)^2 . Thus, the integral becomes

I = 0 1 ln ( 1 x + 1 + x ) d x = 0 1 1 2 ln ( 1 x + 1 + x ) 2 d x = 0 1 1 2 ln ( ( 1 x ) + 2 ( 1 x ) ( 1 + x ) + ( 1 x ) ) d x = 0 1 1 2 ln ( 2 + 2 1 x 2 ) d x \begin{aligned} I &= \int_0^1 \ln \left( \sqrt{1 - x} + \sqrt{1 + x} \right) \, dx \\ &= \int_0^1 \frac{1}{2} \ln \left( \sqrt{1 - x} + \sqrt{1 + x} \right)^2 \, dx \\ &= \int_0^1 \frac{1}{2} \ln \left( (1 - x) + 2\sqrt{(1 - x)(1 + x)} + (1 - x) \right) \, dx \\ &= \int_0^1 \frac{1}{2} \ln \left( 2 + 2\sqrt{1 - x^2} \right) \, dx \end{aligned}

From here, we make the substitution x = sin θ x = \sin \theta :

I = 0 1 1 2 ln ( 2 + 2 1 x 2 ) d x = 0 π / 2 1 2 ln ( 2 + 2 1 sin 2 θ ) ( c o s θ d θ ) = 0 π / 2 1 2 ln ( 2 + 2 cos θ ) c o s θ d θ \begin{aligned} I &= \int_0^1 \frac{1}{2} \ln \left( 2 + 2\sqrt{1 - x^2} \right) \, dx \\ &= \int_0^{\pi / 2} \frac{1}{2} \ln \left( 2 + 2\sqrt{1 - \sin^2 \theta} \right) (cos \theta \, d \theta) \\ &= \int_0^{\pi / 2} \frac{1}{2} \ln \left( 2 + 2 \cos \theta \right) cos \theta \, d \theta \end{aligned}

Now, we use integration by parts, such that

u = ln ( 2 + 2 cos θ ) d v = cos θ d θ d u = 2 sin θ 2 + 2 cos θ d θ v = sin θ \begin{aligned} u &= \ln (2 + 2 \cos \theta) & dv &= \cos \theta \, d \theta \\ du &= \frac{-2 \sin \theta}{2 + 2 \cos \theta} \, d \theta & v &= \sin \theta \end{aligned}

Then, the value of the integral becomes

I = 0 π / 2 1 2 ln ( 2 + 2 cos θ ) c o s θ d θ = 1 2 ( ( ln ( 2 + 2 cos θ ) sin θ ) 0 π / 2 0 π / 2 2 sin 2 θ 2 + 2 cos θ d θ ) = 1 2 ( ln ( 2 ) + 0 π / 2 sin 2 θ 1 + cos θ d θ ) \begin{aligned} I &= \int_0^{\pi / 2} \frac{1}{2} \ln \left( 2 + 2 \cos \theta \right) cos \theta \, d \theta \\ &= \frac{1}{2} \left( \left. (\ln (2 + 2 \cos \theta) \sin \theta) \right|_0^{\pi / 2} - \int_0^{\pi / 2} \frac{-2 \sin^2 \theta}{2 + 2 \cos \theta} \, d \theta \right) \\ &= \frac{1}{2} \left( \ln (2) + \int_0^{\pi / 2} \frac{\sin^2 \theta}{1 + \cos \theta} \, d \theta \right) \end{aligned}

The resulting integral on the right can be simplified using the trigonometric identity sin 2 θ + cos 2 θ = 1 \sin^2 \theta + \cos^2 \theta = 1 . Substituting 1 cos 2 θ 1 - \cos^2 \theta for sin 2 θ \sin^2 \theta , we see that

0 π / 2 sin 2 θ 1 + cos θ d θ = 0 π / 2 1 cos 2 θ 1 + cos θ d θ = 0 π / 2 ( 1 cos θ ) ( 1 + cos θ ) 1 + cos θ d θ = 0 π / 2 ( 1 cos θ ) d θ = 0 π / 2 1 d θ 0 π / 2 cos θ d θ = π 2 1 \begin{aligned} \int_0^{\pi / 2} \frac{\sin^2 \theta}{1 + \cos \theta} \, d \theta &= \int_0^{\pi / 2} \frac{1 - \cos^2 \theta}{1 + \cos \theta} \, d \theta \\ &= \int_0^{\pi / 2} \frac{(1 - \cos \theta)(1 + \cos \theta)}{1 + \cos \theta} \, d \theta \\ &= \int_0^{\pi / 2} (1 - \cos \theta) \, d \theta \\ &= \int_0^{\pi / 2} 1 \, d \theta - \int_0^{\pi / 2} \cos \theta \, d \theta \\ &= \frac{\pi}{2} - 1 \end{aligned}

Thus, the value of the integral is

I = 1 2 ( ln ( 2 ) + 0 π / 2 sin 2 θ 1 + cos θ d θ ) = 1 2 ( ln ( 2 ) 1 + π 2 ) = 1 2 ln ( 2 ) 1 2 + π 4 \begin{aligned} I &= \frac{1}{2} \left( \ln (2) + \int_0^{\pi / 2} \frac{\sin^2 \theta}{1 + \cos \theta} \, d \theta \right) \\ &= \frac{1}{2} \left( \ln (2) - 1 + \frac{\pi}{2} \right) \\ &= \frac{1}{2} \ln (2) - \frac{1}{2} + \frac{\pi}{4} \end{aligned}

And therefore,

A + B + C + D = 2 + 2 + 2 + 4 = 10 A + B + C + D = 2 + 2 + 2 + 4 = \boxed{10}

Solution IMGUR Solution IMGUR

Wow great approach..!!

Harshvardhan Mehta - 5 years, 8 months ago

integration by parts was easier. But ya yours is a nice approach.

Aditya Kumar - 5 years, 8 months ago
Ayush Verma
Oct 4, 2015

L e t x = sin 2 θ f o r θ ( 0 , π 4 ) 1 x = sin θ cos θ = cos θ sin θ f o r θ ( 0 , π 4 ) s i m i l a r i l y , 1 + x = cos θ + sin θ 1 x + 1 + x = 2 cos θ d x = 2 cos 2 θ d θ I = 0 1 ln ( 1 x + 1 + x ) d x = 0 π 4 ln ( 2 cos θ ) . 2 cos 2 θ d θ b y p a r t s , ln ( 2 cos θ ) . 2 cos 2 θ d θ = sin 2 θ . ln ( 2 cos θ ) sin 2 θ 2 sin θ 2 cos θ d θ = sin 2 θ . ln ( 2 cos θ ) + 2 sin 2 θ d θ = sin 2 θ . ln ( 2 cos θ ) 1 2 sin 2 θ + θ + C 0 π 4 ln ( 2 cos θ ) . 2 cos 2 θ d θ = [ sin 2 θ . ln ( 2 cos θ ) 1 2 sin 2 θ + θ ] 0 π 4 = 1 2 ln 2 1 2 + π 4 A + B + C + D = 2 + 2 + 2 + 4 = 10 Let\quad x=\sin { 2\theta } \quad for\quad \theta \in \left( 0,\cfrac { \pi }{ 4 } \right) \\ \\ \Rightarrow \sqrt { 1-x } =\left| \sin { \theta } -\cos { \theta } \right| =\cos { \theta } -\sin { \theta } \quad for\quad \theta \in \left( 0,\cfrac { \pi }{ 4 } \right) \\ \\ similarily,\sqrt { 1+x } =\cos { \theta } +\sin { \theta } \\ \\ \Rightarrow \sqrt { 1-x } +\sqrt { 1+x } =2\cos { \theta } \\ \\ dx=2\cos { 2\theta \quad d\theta } \\ \\ \therefore I=\int _{ 0 }^{ 1 }{ \ln { \left( \sqrt { 1-x } +\sqrt { 1+x } \right) } } dx=\int _{ 0 }^{ \cfrac { \pi }{ 4 } }{ \ln { \left( 2\cos { \theta } \right) } } .2\cos { 2\theta \quad d\theta } \\ \\ by\quad parts,\int { \ln { \left( 2\cos { \theta } \right) } } .2\cos { 2\theta \quad d\theta } =\sin { 2\theta .\ln { \left( 2\cos { \theta } \right) } } -\int { \sin { 2\theta \cfrac { -2\sin { \theta } }{ 2\cos { \theta } } } } d\theta \\ \\ =\sin { 2\theta .\ln { \left( 2\cos { \theta } \right) } } +\int { 2\sin ^{ 2 }{ \theta } } d\theta =\sin { 2\theta .\ln { \left( 2\cos { \theta } \right) } } -\cfrac { 1 }{ 2 } \sin { 2\theta } +\theta +C\\ \\ \therefore \int _{ 0 }^{ \cfrac { \pi }{ 4 } }{ \ln { \left( 2\cos { \theta } \right) } } .2\cos { 2\theta \quad d\theta } ={ \left[ \sin { 2\theta .\ln { \left( 2\cos { \theta } \right) } } -\cfrac { 1 }{ 2 } \sin { 2\theta } +\theta \right] }_{ 0 }^{ \cfrac { \pi }{ 4 } }\\ \\ =\cfrac { 1 }{ 2 } \ln { 2 } -\cfrac { 1 }{ 2 } +\cfrac { \pi }{ 4 } \\ \\ \therefore A+B+C+D=2+2+2+4=10

Abhi Kumbale
May 18, 2016

Just try using normal integration by parts without substitution to get a simple and elegant solution!!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...