Looks easy, but it isn't!

Geometry Level 3

sin 2 5 + sin 2 1 0 + sin 2 1 5 + + sin 2 9 0 = ? \sin^2 5^\circ + \sin^2 10^\circ + \sin^2 15^\circ + \cdots + \sin^2 90^\circ =\, ?

10.5 9.5 11.5 8.5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sam Bealing
Apr 7, 2016

We can rewrite the expression as:

( sin 2 ( 5 ) + sin 2 ( 8 5 ) ) + ( sin 2 ( 1 0 ) + sin 2 ( 8 0 ) ) + . . . + sin 2 ( 4 5 ) + sin 2 ( 9 0 ) (\sin^{2} (5^{\circ})+\sin^{2} (85^{\circ}))+(\sin^{2} (10^{\circ})+\sin^{2} (80^{\circ}))+...+\sin^{2} (45^{\circ})+\sin^{2} (90^{\circ})

Using sin ( 9 0 θ ) = cos ( θ ) \sin(90^{\circ}-\theta)=\cos(\theta) :

. . . = ( sin 2 ( 5 ) + cos 2 ( 5 ) ) + ( sin 2 ( 1 0 ) + cos 2 ( 1 0 ) ) + . . . + 1 2 + 1 ...=(\sin^{2} (5^{\circ})+\cos^{2} (5^{\circ}))+(\sin^{2} (10^{\circ})+\cos^{2} (10^{\circ}))+...+\frac{1}{2}+1

Using sin 2 ( θ ) + cos 2 ( θ ) = 1 \sin^{2}(\theta)+\cos^{2}(\theta)=1 :

. . . = 1 + 1 + . . . + 3 2 ...=1+1+...+\frac{3}{2}

We know there are 40 5 5 + 1 = 7 + 1 = 8 \frac{40-5}{5}+1=7+1=8 pairs of sines and cosines so:

. . . = 8 + 3 2 = 19 2 = 9.5 ...=8+\frac{3}{2}=\frac{19}{2}=9.5

Moderator note:

Good observation of the pairing of angles.

Otto Bretscher
Apr 7, 2016

k = 1 18 sin 2 ( k π 36 ) = 9 1 2 k = 1 18 cos ( k π 18 ) = 9 1 2 × ( 1 ) = 9.5 \sum_{k=1}^{18}\sin^2\left(\frac{k\pi}{36}\right)=9-\frac{1}{2}\sum_{k=1}^{18}\cos\left(\frac{k\pi}{18}\right)=9-\frac{1}{2}\times(-1)=\boxed{9.5}

We first use sin 2 ( t ) = 1 2 1 2 cos ( 2 t ) \sin^2(t)=\frac{1}{2}-\frac{1}{2}\cos(2t) and then cos ( t ) = cos ( π t ) \cos(t)=-\cos(\pi-t) .

Hmm.... I din't learn these all so can you post a solution based on the first trigonometric identity .

Abhiram Rao - 5 years, 2 months ago

Log in to reply

We have the double angle formula cos ( 2 t ) = cos 2 ( t ) sin 2 ( t ) = 1 2 sin 2 ( t ) \cos(2t)=\cos^2(t)-\sin^2(t)=1-2\sin^2(t) ; now solve for sin 2 ( t ) \sin^2(t) . Apply this to t = k π 36 t=\frac{k\pi}{36} for k = 1 , . . , 18 k=1,..,18 .

Does this help?

Otto Bretscher - 5 years, 2 months ago

Log in to reply

Yeah , it does. And thanks for the explanation.

Abhiram Rao - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...