A calculus problem by Lorenzo Di Patrizi

Calculus Level 4

0 π x 1 + sin x d x = ? \large \int_0^\pi \dfrac x{1+\sin x} \, dx = ?

The integral above has a closed form. Find the value of this closed form to two decimal places.


The answer is 3.14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 15, 2016

I = 0 π x 1 + sin x d x Using a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 0 π x 1 + sin x + π x 1 + sin ( π x ) d x Note that sin ( π x ) = sin x = 1 2 0 π x 1 + sin x + π x 1 + sin x d x = 1 2 0 π π 1 + sin x d x Let t = tan x 2 , sin x = 2 t 1 + t 2 , d x = 2 d t 1 + t 2 = π 2 0 2 ( 1 + t 2 ) ( 1 + 2 t 1 + t 2 ) d t = π 0 1 ( 1 + t ) 2 d t = π 1 + t 0 = π 3.14 \begin{aligned} I & = \int_0^\pi \frac x{1+\sin x} dx & \small \color{#3D99F6}{\text{Using }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx} \\ & = \frac 12 \int_0^\pi \frac x{1+\sin x} + \frac {\pi -x}{1+\color{#3D99F6}{\sin (\pi -x)}} dx & \small \color{#3D99F6}{\text{Note that }\sin (\pi-x) = \sin x} \\ & = \frac 12 \int_0^\pi \frac x{1+\sin x} + \frac {\pi -x}{1+\color{#3D99F6}{\sin x}} dx \\ & = \frac 12 \int_0^\pi \frac \pi{1+\color{#3D99F6}{\sin x}} dx & \small \color{#3D99F6}{\text{Let }t = \tan \frac x2, \ \sin x = \frac {2t}{1+t^2}, \ dx = \frac {2\ dt}{1+t^2}} \\ & = \frac \pi 2 \int_0^\infty \frac 2{(1+t^2)\left(1+\frac {2t}{1+t^2} \right)} dt \\ & = \pi \int_0^\infty \frac 1{(1+t)^2} dt \\ & = \frac \pi {1+t} \bigg|_\infty^0 = \boxed{\pi} \approx \boxed{3.14} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...