Looks familiar?

Geometry Level 4

1 + 2 sin 2 x sin x + cos x = 2 \large \frac{1+2\sin {2x}}{\sin{x}+\cos{x}}=\sqrt{2}

If the largest possible value of x < π x<\pi satisfying the equation above is a π b \dfrac{a\pi}{b} , where a a and b b are coprime positive integers. What is a + b = ? a+b=\boxed{?}

Hint : See this note .


The answer is 37.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Aug 10, 2017

1 + 2 sin 2 x sin x + cos x = 2 1 + 2 cos ( π 2 2 x ) 2 cos ( π 4 x ) = 2 1 + 2 cos ( 2 ( π 4 x ) ) = 2 cos ( π 4 x ) Let θ = π 4 x 1 + 2 cos 2 θ = 2 cos θ cos θ cos 2 θ = 1 2 \begin{aligned} \frac {1+2\sin 2x}{\sin x + \cos x} & = \sqrt 2 \\ \frac {1+2\cos \left(\frac \pi 2 - 2x\right)}{\sqrt 2 \cos \left(\frac \pi 4 - x\right)} & = \sqrt 2 \\ 1+2\cos \left(2\left(\frac \pi 4 - x\right) \right) & = 2 \cos \left(\frac \pi 4 - x\right) & \small \color{#3D99F6} \text{Let }\theta = \frac \pi 4 - x \\ 1 + 2\cos 2\theta & = 2\cos \theta \\ \cos \theta - \cos 2\theta & = \frac 12 \end{aligned}

Note that k = 0 n 1 cos ( 2 k + 1 2 n + 1 π ) = 1 2 \displaystyle \sum_{k=0}^{n-1} \cos \left( \frac {2k+1}{2n+1}\pi \right) = \frac 12 (see proof ). A particular case is 2 n + 1 = 5 2n+1=5 , then cos π 5 + cos 3 π 5 = 1 2 \cos \dfrac \pi 5 + \cos \dfrac {3\pi}5 = \dfrac 12 .

We note that θ = π 5 \theta = \dfrac \pi 5 is a solution, because then cos 2 θ = cos 2 π 5 = cos 3 π 5 \cos 2\theta = \cos \dfrac {2\pi} 5 = - \cos \dfrac {3\pi}5 . cos θ cos 2 θ = cos π 5 + cos 3 π 5 = 1 2 \implies \cos \theta - \cos 2\theta = \cos \dfrac \pi 5 + \cos \dfrac {3\pi}5 = \dfrac 12 . And from θ = π 4 x \theta = \dfrac \pi4 - x , x = π 20 \implies x = \dfrac \pi{20} . Since cos θ = cos ( θ ) \cos \theta = \cos (- \theta) , then x π 4 = π 5 = 9 π 20 x - \dfrac \pi 4 = \dfrac \pi 5 = \dfrac {9\pi}{20}

We note that θ = 3 π 5 \theta = \dfrac {3\pi}5 is also a solution, because then cos 2 θ = cos 6 π 5 = cos π 5 \cos 2\theta = \cos \dfrac {6\pi} 5 = - \cos \dfrac \pi 5 . cos θ cos 2 θ = cos 3 π 5 + cos π 5 = 1 2 \implies \cos \theta - \cos 2\theta = \cos \dfrac {3\pi}5 + \cos \dfrac \pi 5 = \dfrac 12 . And from θ = π 4 x \theta = \dfrac \pi4 - x , x = 7 π 20 \implies x = -\dfrac {7\pi}{20} . And x π 4 = 3 π 5 = 17 π 20 x - \dfrac \pi 4 = \dfrac {3\pi}5 = \dfrac {17\pi}{20} .

The largest x < π x < \pi is x = 17 π 20 x = \dfrac {17\pi}{20} , a + b = 17 + 20 = 37 \implies a+b = 17+20 = \boxed{37}

Noel Lo
Aug 10, 2017

1 + 2 sin 2 x sin x + cos x = 2 \frac{1+2\sin {2x}}{\sin{x}+\cos{x}}=\sqrt{2}

1 + 2 sin 2 x = 2 ( sin x + cos x ) 1+2\sin {2x}=\sqrt{2}(\sin{x}+\cos{x})

1 2 ( 1 + 2 sin 2 x ) = 2 2 ( sin x + cos x ) \frac{1}{2}(1+2\sin {2x})=\frac{\sqrt{2}}{2}(\sin{x}+\cos{x})

1 2 + sin 2 x = 2 2 sin x + 2 2 cos x \frac{1}{2}+\sin {2x}=\frac{\sqrt{2}}{2}\sin{x}+\frac{\sqrt{2}}{2}\cos{x}

1 2 + cos ( π 2 2 x ) = sin π 4 sin x + cos π 4 cos x \frac{1}{2}+\cos {(\frac{\pi}{2}-2x)}=\sin{\frac{\pi}{4}}\sin{x}+\cos{\frac{\pi}{4}}\cos{x}

1 2 + cos ( π 2 2 x ) = cos ( π 4 x ) \frac{1}{2}+\cos {(\frac{\pi}{2}-2x)}=\cos {(\frac{\pi}{4}-x)}

1 2 + cos 2 ( π 4 x ) = cos ( π 4 x ) \frac{1}{2}+\cos{2(\frac{\pi}{4}-x)}=\cos{(\frac{\pi}{4}-x)}

Now we let θ = π 4 x \theta=\frac{\pi}{4}-x .

1 2 + cos ( 2 θ ) = cos θ \frac{1}{2}+\cos{(2\theta)}=\cos{\theta}

It then remains to make use of the hint given in the question:

2 sin θ ( 1 2 + cos ( 2 θ ) ) = 2 sin θ cos θ 2\sin{\theta}(\frac{1}{2}+\cos{(2\theta)})=2\sin{\theta}\cos{\theta}

sin θ + 2 sin θ cos ( 2 θ ) = sin ( 2 θ ) \sin{\theta}+2\sin{\theta}\cos{(2\theta)}=\sin{(2\theta)}

sin ( 2 1 ) θ + 2 sin θ cos ( 2 θ ) = sin ( 2 θ ) \sin{(2-1)\theta}+2\sin{\theta}\cos{(2\theta)}=\sin{(2\theta)}

sin ( 2 θ ) cos θ sin θ cos ( 2 θ ) + 2 sin θ cos ( 2 θ ) = sin ( 2 θ ) \sin{(2\theta)}\cos{\theta}-\sin{\theta}\cos{(2\theta)}+2\sin{\theta}\cos{(2\theta)}=\sin{(2\theta)}

sin ( 2 θ ) cos θ + sin θ cos ( 2 θ ) = sin ( 2 θ ) \sin{(2\theta)}\cos{\theta}+\sin{\theta}\cos{(2\theta)}=\sin{(2\theta)}

sin ( 2 + 1 ) θ = sin ( 2 θ ) \sin{(2+1)\theta}=\sin{(2\theta)}

sin ( 3 θ ) = sin ( 2 θ ) \sin{(3\theta)}=\sin{(2\theta)}

sin ( 3 θ ) = sin ( π 2 θ ) \sin{(3\theta)}=\sin{(\pi-2\theta)}

3 θ = π 2 θ 3\theta=\pi-2\theta

( 3 + 2 ) θ = π (3+2)\theta=\pi

5 θ = π 5\theta=\pi

θ = π 5 \theta=\frac{\pi}{5}

Note that the above calculations was just to work out the basic solution for θ \theta . Its full set of solutions is θ = π 5 , π 5 , 3 π 5 \theta=\frac{\pi}{5}, -\frac{\pi}{5}, -\frac{3\pi}{5} and so on. This is because the sine function has a period of 2 π 2\pi so upon divison by five to get θ \theta , the period becomes 2 π 5 \frac{2\pi}{5} . Note that θ = 3 π 5 \theta=-\frac{3\pi}{5} is the value that gives the largest x < π x<\pi :

π 4 x = 3 π 5 \frac{\pi}{4}-x=-\frac{3\pi}{5}

x = 3 π 5 + π 4 x=\frac{3\pi}{5}+\frac{\pi}{4}

x = ( 12 + 5 ) π 20 x=\frac{(12+5)\pi}{20}

x = 17 π 20 x=\frac{17\pi}{20}

Therefore a = 17 , b = 20 a=17, b=20 and a + b = 37 a+b=\boxed{37}

Boi (보이)
Aug 11, 2017

Just...

1 + 2 sin 2 x sin x + cos x = 1 + 4 sin x cos x sin x + cos x = 2 ( 1 + 2 sin x cos x ) sin x + cos x 1 sin x + cos x = 2 ( sin x + cos x ) 2 sin x + cos x 1 sin x + cos x = 2 ( sin x + cos x ) 1 sin x + cos x = 2 . \dfrac{1+2\sin 2x}{\sin x+\cos x} \\ =\dfrac{1+4\sin x\cos x}{\sin x+\cos x} \\ =\dfrac{2(1+2\sin x\cos x)}{\sin x+\cos x}-\dfrac{1}{\sin x+\cos x} \\ =\dfrac{2(\sin x+\cos x)^2}{\sin x+\cos x}-\dfrac{1}{\sin x+\cos x} \\ =2(\sin x+\cos x)-\dfrac{1}{\sin x+\cos x}=\sqrt{2}.

Let sin x + cos x = 2 sin ( x + π 4 ) = t \sin x+\cos x=\sqrt{2}\sin\left(x+\dfrac{\pi}{4}\right)=t and solve for t t :

t = 2 ± 10 4 = 2 sin ( x + π 4 ) . t=\dfrac{\sqrt{2}\pm\sqrt{10}}{4}=\sqrt{2}\sin\left(x+\dfrac{\pi}{4}\right).

Therefore x + π 4 = , π 10 , 3 π 10 , 11 π 10 , x+\dfrac{\pi}{4}=\cdots,~\dfrac{-\pi}{10},~\dfrac{3\pi}{10},~\dfrac{11\pi}{10}, and the maximum of x x occurs at x = 17 π 20 . x=\dfrac{17\pi}{20}.

a + b = 37 . \therefore~a+b=\boxed{37}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...