Looks Familiar right??

Calculus Level 4

0 x 5 5 x d x = a ( ln b ) c \int_0^\infty x^{5}5^{-x}\text{d}x = \dfrac{a}{(\ln{b})^{c}} a , b , c a,b,c are positive integers, submit ( a + b + c ) 10 \sqrt{(a+b+c)-10}


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 29, 2015

0 x 5 5 x d x = 0 x 5 e x ln 5 d x Let u = x ln 5 d x = d u ln 5 = 1 ( ln 5 ) 6 0 u 5 e u d u = Γ ( 6 ) ( ln 5 ) 6 = 5 ! ( ln 5 ) 6 = 120 ( ln 5 ) 6 a + b + c 10 = 120 + 5 + 6 10 = 121 = 11 \begin{aligned} \int_0^\infty x^55^{-x} dx & = \int_0^\infty x^5 e^{-x \ln{5}} dx \quad \quad \color{#3D99F6}{\text{Let } u = x \ln{5} \quad \Rightarrow dx = \frac{du}{\ln{5}}} \\ & = \frac{1}{(\ln{5})^6} \int_0^\infty u^5 e^{-u} du \\ & = \frac{\Gamma (6)}{(\ln{5})^6} = \frac{5!}{(\ln{5})^6} = \frac{120}{(\ln{5})^6} \\ & \\ \Rightarrow \sqrt{a+b+c-10} & = \sqrt{120+5+6-10} = \sqrt{121} = \boxed{11} \end{aligned}

Deep Seth
Jul 10, 2015

I ( n ) = 0 t n a t d t \large{I(n)=\displaystyle \int_{0}^{\infty} t^{n}a^{-t} dt}

where a a is a constant

l e t w = t ln a let~w=t \ln a

d w = ln a d t dw=\ln a~ dt

The integral now becomes

1 ( ln a ) n + 1 0 w n e w d w \large{\frac{1}{(\ln a)^{n+1}} \displaystyle \int_{0}^{\infty} w^{n} e^{-w} dw}

= Γ ( n + 1 ) ( ln a ) n + 1 \large{=\frac { \Gamma \left( n+1 \right) }{ { \left( \ln { a } \right) }^{ n+1 } } }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...