Looks hard

Find the sum of all values of a a such that there exist positive integers a a and b b satisfying

( a b ) a b = 2016 (a-b)\sqrt{ab}=2016


The answer is 209.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Alexander Shannon
Apr 26, 2020

Assum d = g c d ( a , b ) d=gcd(a,b) . Then

( a b ) a b = d 2 ( a b ) a b = 2 5 3 2 7 (a-b)\sqrt{ab}=d^2\cdot (a'-b')\sqrt{a'b'}=2^5\cdot 3^2\cdot 7

Note that a = a d , b = b d a=a'\cdot d \ ,\ b=b'\cdot d , such that g c d ( a , b ) = 1 gcd(a',b')=1 . We can take a = A 2 , b = B 2 a'=A^2 \ , \ b'=B^2 , since a b \sqrt{a'b'} should be a whole number. consequently, All the terms in the product ( a b ) a b = A 2 B 2 A 2 B 2 = ( A + B ) A B ( A B ) (a'-b')\sqrt{a'b'}= A^2-B^2 \sqrt{A^2 \cdot B^2}=(A+B)\cdot A \cdot B \cdot (A-B) are relatively prime, except for g c d ( A B , A + B ) gcd(A-B,A+B) that can either 1 1 or 2 2 . If we re-write the original equation

d 2 ( A + B ) A B ( A B ) = 2 5 3 2 7 d^2(A+B)\cdot A \cdot B \cdot (A-B)=2^5\cdot 3^2\cdot 7

Now, we need to partition 1 d 2 2 5 3 2 7 \frac{1}{d^2}\cdot 2^5\cdot 3^2\cdot 7 into 4 4 groups (integer 1 1 is a legitimate partition), such that they meet the mentioned requirements.

if d = 1 d=1 then

( A + B , A , B , A B ) = ( 2 4 , 3 2 , 7 , 2 ) a = d A 2 = 81 (A+B,A,B,A-B)=(2^4,3^2,7,2) \implies a=d \cdot A^2 =81

is the only solution

if d = 2 d=2 then

( A + B ) A B ( A B ) = 2 3 3 2 7 (A+B)\cdot A \cdot B \cdot (A-B)=2^3\cdot 3^2\cdot 7

and

( A + B , A , B , A B ) = ( 3 2 , 2 3 , 1 , 7 ) a = d A 2 = 128 (A+B,A,B,A-B)=(3^2,2^3,1,7) \implies a=d \cdot A^2 =128

is the only solution.

For other possible d d 's, there would be no solutions.

The sum of the valid solutions is 81 + 128 = 209 81+128=209

Chew-Seong Cheong
Apr 26, 2020

Given that ( a b ) a b = 2016 (a-b)\sqrt{ab} = 2016 , for positive integers a a and b b , solutions exist only when a > b a > b . Let a = b + c a=b+c , where c c is also a positive integer. Then we have

c b ( b + c ) = 2016 b ( b + c ) = 2016 c For both sides to be integers, c must be a divisor of 2016. b 2 + c b 201 6 2 c 2 = 0 b = c + c 2 + 4 ( 201 6 2 c 2 ) 2 \begin{aligned} c\sqrt{b(b+c)} & = 2016 \\ \sqrt{b(b+c)} & = \frac {2016}c & \small \blue{\text{For both sides to be integers, }c \text{ must be a divisor of 2016.}} \\ b^2 + cb - \frac {2016^2}{c^2} & = 0 \\ \implies b & = \frac {-c + \sqrt{c^2 + 4\left(\frac{2016^2}{c^2}\right)}}2 \end{aligned}

For b b to be an integer, the sum c 2 + 4 ( 201 6 2 ) c 2 c^2 + \dfrac {4(2016^2)}{c^2} must be a perfect square. Since 2016 = 2 5 3 2 7 2016 = 2^5\cdot 3^2 \cdot 7 and c c is its divisor, there are ( 5 + 1 ) ( 2 + 1 ) ( 1 + 1 ) = 36 (5+1)(2+1)(1+1) = 36 values of c c . Out of the 36 36 values of c c , the sum is perfect square when,

{ c = 1 b = 2015.5 b is not an integer, rejected. c = 32 b = 49 a = 81 c = 126 b = 2 a = 128 \begin{cases} \begin{array}{lll} c = 1 & \implies \red{b = 2015.5} & \small \red{b \text{ is not an integer, rejected.}} \\ c = 32 & \implies b = 49 & \implies a = 81 \\ c = 126 & \implies b = 2 & \implies a = 128 \end{array} \end{cases}

Therefore the sum of all values of a a , 81 + 128 = 209 81+128=\boxed{209} .

Mahdi Raza
Apr 25, 2020
1
2
3
4
5
6
import math

for a in range(2016):
    for b in range(2016):
        if (a-b)*(math.sqrt(a*b)) == 2016:
            print(a,b) 

1
2
81 49
128 2

I got the values of a a and b b , but forgot to add the values of a a :)

A Former Brilliant Member - 1 year, 1 month ago

Log in to reply

lol, it Happens a lot. By the way what method did you use?

Mahdi Raza - 1 year, 1 month ago

So, what did u enter as your answer?

Alexander Shannon - 1 year, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...