Looks Like A Gaussian!

Calculus Level 4

If 0 e x 5 2 d x \displaystyle \int_0^\infty e^{ -x^{\frac {5}{2}} } \ \mathrm{d} x can be expressed in the form of a b Γ ( 2 5 ) \dfrac {a}{b} \Gamma \left ( \dfrac {2}{5} \right ) for positive coprime integers a a and b b . Find a + b a + b .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kunal Gupta
Mar 14, 2015

Consider: I = 0 e x n d x I= \displaystyle \int_{0}^{\infty} e^{-x^{n}} dx
Set x n = t x^{n} =t , so I = 1 n 0 t 1 n n e t d t I= \dfrac{1}{n} \displaystyle \int_{0}^{\infty} t^{\frac{1-n}{n}}e^{-t}dt
Now, Gamma Function is defined as:

Γ ( n ) = 0 x n 1 e x d x \Gamma(n) = \displaystyle \int_{0}^{\infty} x^{n-1}e^{-x}dx

So, I = 1 n Γ ( 1 n ) I= \dfrac{1}{n} \Gamma \left( \dfrac{1}{n} \right) So, the answer becomes : 2 5 Γ ( 2 5 ) \dfrac{2}{5} \Gamma \left( \dfrac{2}{5} \right)

Using the fact that Γ ( t + 1 ) = t Γ ( t ) \Gamma(t + 1) = t \Gamma(t) , you can write the answer in different forms. For example, 2 5 Γ ( 2 5 ) = 1 1 Γ ( 7 5 ) = 5 7 Γ ( 12 5 ) . \frac{2}{5} \Gamma \left( \frac{2}{5} \right) = \frac{1}{1} \Gamma \left( \frac{7}{5} \right) = \frac{5}{7} \Gamma \left(\frac{12}{5} \right).

Jon Haussmann - 6 years, 3 months ago

Log in to reply

Thanks. I have updated the problem statement.

Calvin Lin Staff - 4 years, 7 months ago

Taking Jon Haussmann comment into consideration I think you should edit the statement of the problem

Arkin Dharawat - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...