looks like double trouble is kicking in

Calculus Level 3

n = 1 m = 1 1 2 n + m 1 ( n + m 1 ) ( n + m ) = ln ( A ) B \sum_{n=1}^{\infty }\sum_{m=1}^{\infty} \frac{1}{2^{n+m-1}\left( n+m-1 \right)\left( n+m\right)} = \ln{\left(A\right)} -B

The equation above holds true for real numbers A A and B B . Find A + B A+B .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Nov 16, 2019

S = n = 1 m = 1 1 2 n + m 1 ( n + m 1 ) ( n + m ) = n = 1 m = 1 1 2 n + m 1 ( 1 n + m 1 1 n + m ) = n = 1 m = 1 ( 1 ( n + m 1 ) 2 n + m 1 2 ( n + m ) 2 n + m ) = n = 1 ( 1 n ( 2 n ) m = 1 1 ( n + m ) 2 n + m ) Replace 1 2 by x = n = 1 x n 1 d x n = 1 m = 1 x n + m 1 d x = n = 0 x n d x n = 1 m = 0 x n + m d x Since x k converges absolutely for = ( n = 0 x n ) d x ( n = 1 m = 0 x n + m ) d x x < 1 , we can swap with . = d x 1 x ( n = 1 x n m = 0 x m ) d x = ln ( 1 x ) x ( 1 x ) 2 d x By integration by parts = ln ( 1 x ) x 1 x + 1 1 x d x = 2 ln ( 1 x ) x 1 x Put back 1 2 as x = ln 4 1 \begin{aligned} S & = \sum_{n=1}^\infty \sum_{m=1}^\infty \frac 1{2^{n+m-1}(n+m-1)(n+m)} \\ & = \sum_{n=1}^\infty \sum_{m=1}^\infty \frac 1{2^{n+m-1}}\left(\frac 1{n+m-1} - \frac 1{n+m} \right) \\ & = \sum_{n=1}^\infty \sum_{m=1}^\infty \left(\frac 1{(n+m-1)2^{n+m-1}} - \frac 2{(n+m)2^{n+m}} \right) \\ & = \sum_{n=1}^\infty \left(\frac 1{n(2^n)} - \sum_{m=1}^\infty \frac 1{(n+m)2^{n+m}} \right) & \small \blue{\text{Replace }\frac 12 \text{ by x}} \\ & = \sum_{\blue{n=1}}^\infty \int x^{\blue{n-1}} dx - \sum_{n=1}^\infty \sum_{\blue{m=1}}^\infty \int x^{n+\blue{m-1}} dx \\ & = \sum_{\red{n=0}}^\infty \int x^{\red n} dx - \sum_{n=1}^\infty \sum_{\red{m=0}}^\infty \int x^{n+\red m} dx & \small \blue{\text{Since }x^k \text{ converges absolutely for}} \\ & = \int \left(\sum_{n=0}^\infty x^n \right) dx - \int \left(\sum_{n=1}^\infty \sum_{m=0}^\infty x^{n+m} \right) dx & \small \blue{|x| < 1 \text{, we can swap} \sum \text{ with }\int.} \\ & = \int \frac {dx}{1-x} - \int \left(\sum_{n=1}^\infty x^n \sum_{m=0}^\infty x^m \right) dx \\ & = - \ln (1-x) - \blue{\int \frac x{(1-x)^2} dx} & \small \blue{\text{By integration by parts}} \\ & = - \ln(1-x) - \blue{\frac x{1-x} + \int \frac 1{1-x} dx} \\ & = - 2\ln(1-x) - \frac x{1-x} & \small \blue{\text{Put back }\frac 12 \text{ as }x} \\ & = \ln 4 - 1 \end{aligned}

Therefore, A + B = 4 + 1 = 5 A+B= 4+1 = \boxed 5 .

Amal Hari
Nov 16, 2019

By expanding 0 x 1 1 + x d x \displaystyle \int_{0}^{x}\frac{1}{1+x} dx using integration by parts and not by directly finding the anti-derivative we can find an infinite series for ln ( 1 + x ) \ln\left(1+x\right) which converges for all x x in the domain of this function in the form of ( m = 1 x m m ( 1 + x ) m ) \left(\displaystyle\sum_{m=1}^{\infty} \frac{x^{m}}{m\left(1+x\right)^{m}}\right) . We find the anti-derivative to this series which is ln ( 1 + x ) d x = ( m = 1 x m m ( 1 + x ) m ) d x \displaystyle\int\ln\left(1+x\right) dx=\displaystyle\int \left(\displaystyle\sum_{m=1}^{\infty} \frac{x^{m}}{m\left(1+x\right)^{m}}\right) dx

For each term the integral becomes i = 1 x m + i ( m + i 1 ) ( m + i ) ( 1 + x ) m + i 1 \displaystyle\sum_{i=1}^{\infty} \frac{x^{m+i}}{\left(m+i-1\right)\left(m+i\right)\left(1+x\right)^{m+i-1}}

applying this to all terms the general form will become m = 1 ( i = 1 x m + i ( m + i 1 ) ( m + i ) ( 1 + x ) m + i 1 ) = ln ( 1 + x ) d x = ( 1 + x ) ln ( 1 + x ) x \displaystyle\sum_{m=1}^{\infty} \left( \sum_{i=1}^{\infty} \frac{x^{m+i}}{\left(m+i-1\right)\left(m+i\right)\left(1+x\right)^{m+i-1}}\right) =\displaystyle\int \ln\left( 1+x\right) dx =\left(1+x\right)\ln\left( 1+x\right) -x

for x = 1 x=1 we have , ( 2 ) ln ( 2 ) 1 = ln ( 4 ) 1 \left(2\right)\ln\left( 2\right) -1= \ln \left(4\right) -1

This is also same as

m = 1 ( i = 1 1 m + i ( m + i 1 ) ( m + i ) ( 2 ) m + i 1 ) \displaystyle\sum_{m=1}^{\infty} \left( \sum_{i=1}^{\infty} \frac{1^{m+i}}{\left(m+i-1\right)\left(m+i\right)\left(2\right)^{m+i-1}}\right)

m = 1 ( i = 1 1 ( m + i 1 ) ( m + i ) ( 2 ) m + i 1 ) \displaystyle\sum_{m=1}^{\infty} \left( \sum_{i=1}^{\infty} \frac{1}{\left(m+i-1\right)\left(m+i\right)\left(2\right)^{m+i-1}}\right)

Mark Hennings
Nov 17, 2019

We have, putting N = m + n 1 N = m+n-1 , m = 1 n = 1 1 2 m + n 1 ( m + n 1 ) ( m + n ) = N = 1 n = 1 N 1 2 N N ( N + 1 ) = N = 1 1 2 N ( N + 1 ) = 2 N = 1 1 2 N N 1 = 2 ln 1 2 1 = ln 4 1 \begin{aligned} \sum_{m=1}^\infty \sum_{n=1}^\infty \frac{1}{2^{m+n-1}(m+n-1)(m+n)} & = \; \sum_{N=1}^\infty \sum_{n=1}^N \frac{1}{2^NN(N+1)} \; = \; \sum_{N=1}^\infty \frac{1}{2^N(N+1)} \\ & = \; 2\sum_{N=1}^\infty \frac{1}{2^NN} - 1 \; = \; -2\ln\tfrac12 - 1 \; = \; \ln4 - 1 \end{aligned} Assuming that A , B A,B are integers, this makes A + B = 4 + 1 = 5 A+B=4+1=\boxed{5} .

Of course, we could also have A = 4 e A = 4e and B = 2 B=2 , which is allowed by the wording of the question (but disallowed by the integer answer format).

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...