A geometry problem by Archit Tripathi

Geometry Level 5

Let J 'J' be any point lying on the circum-circle of a square P Q R S PQRS let A B C ABC be an equilateral triangle inscribed in the same circle. The radius of the circle is r r , then ( J A ) 4 + ( J B ) 4 + ( J C ) 4 = m r n (JA)^{4} + (JB)^{4} + (JC)^{4} = mr^{n} . Find the value of m 2 n m - 2n


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

A B C i s a n e q u i l a t e r a l Δ . J i s a p o i n t o n i t s c i r c u m c i r c l e . L e t k = J A . m = J B . n = J C . S = l e n g t h o f t h e s i d e s . E a c h s i d e , a c h o r d o f t h e c i r c l e , s u b s t a n c e a n a n g l e o f 6 0 o a t i t s o p p o s i t e v e r t e x a n d a t J . C o s 60 = 1 2 , a n d C o s 120 = 1 2 . I n Δ s A J B , B J C a n d A J C , a p p l y i n g C o s R u l e , k 2 + m 2 2 k m 1 2 = S 2 . . . . . . . . . . . . . . ( 1 ) m 2 + n 2 2 m n 1 2 = S 2 . . . . . . . . . . . . . . ( 2 ) n 2 + k 2 2 n k 1 2 = S 2 . . . . . . . . . . . . . . . ( 3 ) ( 3 ) ( 2 ) , g i v e s : k 2 m 2 = n ( k m ) . ( k m ) ( k + m ) = n ( k m ) ( A ) k = m O R ( B ) k m b u t n = k + m . . . . . . . . . . . . . ( 4 ) ( A ) k = m F r o m ( 1 ) , 3 k 2 = S 2 . F r o m ( 3 ) , n 2 + 1 3 S 2 n S 3 S 2 = 0. S o l v i n g q u a d r a t i c i n n > 0 , n = 2 3 S . k 4 + m 4 + n 4 = { 1 9 + 1 9 + 16 9 } S 4 = 2 S 4 ( B ) k m Δ s A J C + C J B = A J B , 1 2 k n S i n 60 + 1 2 n m S i n 60 = 1 2 k m S i n 120 + 1 2 S 2 S i n 60. k m + m n + n k = S 2 . . . . . . . . . . . . . . ( 5 ) S q u a r i n g b o t h s i d e s o f ( 5 ) k 2 m 2 + m 2 n 2 + n 2 k 2 + 2 k m n ( k + m n ) = S 4 . B u t b y ( 4 ) ( k + m n ) = 0. k 2 m 2 + m 2 n 2 + n 2 k 2 = S 4 . . . . . . . . . ( 6 ) A d d i n g ( 1 ) + ( 2 ) + ( 3 ) + ( 5 ) , a n d d i v i d i n g b y 2 w e g e t k 2 + m 2 + n 2 = 2 S 2 . . . . . . . . ( 7 ) k 4 + m 4 + n 4 = { k 2 + m 2 + n 2 } 2 2 { k 2 m 2 + m 2 n 2 + n 2 k 2 } F r o m ( 6 ) a n d ( 7 ) , k 4 + m 4 + n 4 = 4 S 4 2 S 4 = 2 S 4 . ( J A ) 4 + ( J B ) 4 + ( J C ) 4 = 2 S 4 = 2 ( 3 r ) 4 = 18 r 4 S o m = 18 , a n d n = 4. m 2 n = 10 ABC ~is ~an~ equilateral~\Delta.~~ J~ is~ a ~point~ on ~its~ circumcircle.\\ ~~\\ Let~~ k=JA. ~~~~ m=JB. ~~~~ n=JC. ~~~~~~ S=length~ of~ the~ sides. \\ Each~ side,~ ~a ~chord~ of~ the~ circle,~~ substance~ an~ angle~ of~ 60^o \\ at~ its~ opposite~ vertex~ and~ at~ J.\\ Cos60= \frac 1 2,~~ and~~ Cos120~= ~- \frac 1 2 .\\ ~~~\\ In~\Delta s~~~AJB,~~BJC~~and~~AJC,~~applying ~Cos~Rule,\\ k^2+m^2-2*k*m*\frac {-1} 2=S^2..............(1)\\ m^2+n^2-2*m*n*\frac 1 2=S^2..............(2)\\ n^2+k^2-2*n*k*\frac 1 2=S^2...............(3)\\ ~~\\ (3)-(2), ~gives~:-\\ k^2-m^2=n*( k-m).\\ \therefore~(k-m)*(k+m)=n*(k-m)\\ \implies~~(A)~~k=m~~~~\\ OR~~~~(B)~~k\neq m~~but~~n=k+m.............(4) \\~~~~\\ ~~~\\ {\Large{(A)~~k=m}}\\ ~~\\ From ~(1),\\ ​3k^2=S^2.\\ From~(3),\\ n^2+\frac 1 3 S^2-\frac{\large n*S}{ \sqrt3}-S^2=0.\\ Solving ~quadratic~in~n>0,\\ n=\frac 2 {\sqrt3}*S.\\ ~~\\ \therefore~~k^4+m^4+n^4=\{\frac 1 9 +\frac 1 9 +\frac {16} 9 \}S^4\\ ={{\color{#D61F06}{2S^4}}}\\ ~~~\\~~~\\ {\Large {(B)~~k\neq m}}\\ ~~\\ \Delta s~ ~AJC+CJB=AJB,\\ \implies~~\frac 1 2 k*nSin60+ \frac 1 2 n*mSin60=\frac 1 2 k*mSin120+ \frac 1 2 S^2Sin60. \\ \therefore~~-k*m+m*n+n*k=S^2..............(5)\\ ~~~~\\ Squaring~both ~sides~of~(5)\\ k^2*m^2+m^2*n^2+n^2*k^2+2*k*m*n*(k+m-n)=S^4. \\ But~by~(4)~~(k+m-n)=0.\\ \implies~ ~k^2*m^2+m^2*n^2+n^2*k^2=S^4.........(6) Adding~(1)+(2)+(3)+(5), ~and~dividing~by~2~~we~get\\ k^2+m^2+n^2=2S^2........(7)\\ \therefore~k^4+m^4+n^4= \{k^2+m^2+n^2\}^2-2*\{ k^2*m^2+m^2*n^2+n^2*k^2\}\\ From~(6)~and~(7),\\ k^4+m^4+n^4=4S^4 - 2S^4={\color{#D61F06}{2S^4.}} \\ ~~~~\\~~~\\ \implies (JA)^4+(JB)^4+(JC)^4=2S^4=2(\sqrt3*r)^4={\color{#D61F06}{18r^4} } \\ So~m=18,~~and~~n=4.\\ \color{#3D99F6}{m-2n=\Large 10}
E a c h s i d e i s a c h o r d o f t h e c i r c l e . I t s u b s t a n c e a n a n g l e o f 6 0 o a t i t s o p p o s i t e v e r t e x a n d a t J . Each~side~is~a~chord~of~the~circle.\\ It~substance~ an~ angle~ of~ 60^o\\ at~ its~ opposite~ vertex~ and~ at~ J.\\

Niranjan Khanderia - 1 year ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...