Looks like I am on a spree today!

Algebra Level 3

If 2 x = 3 y = 6 z {2}^{x}={3}^{y}={6}^{-z} , Then, Evaluate:-

1 x + 1 y + 1 z \dfrac {1}{x}+\dfrac {1}{y}+\dfrac {1}{z}

Note:-

x , y , z 0 x,y,z \neq 0


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mehul Arora
Jun 6, 2015

Let 2 x = 3 y = 6 z = k {2}^{x}={3}^{y}={6}^{-z}=k

Therefore, k 1 x = 2 {k}^{\dfrac{1}{x}}=2

k 1 y = 3 {k}^{\dfrac{1}{y}}=3

k 1 z = 6 {k}^{\dfrac{-1}{z}}=6

It's a very rare, And Unknown fact that 2 × 3 = 6 2 \times 3 =6

k 1 x × k 1 y = k 1 z \rightarrow {k}^{\dfrac{1}{x}} \times {k}^{\dfrac{1}{y}}={k}^{\dfrac{1}{-z}}

k 1 x + 1 y = k 1 z {k}^{\dfrac{1}{x} + \dfrac {1}{y}}={k}^{\dfrac{-1}{z}}

1 x + 1 y = 1 z \dfrac {1}{x}+ \dfrac{1}{y}= \dfrac {-1}{z}

1 x + 1 y + 1 z = 0 \dfrac {1}{x}+ \dfrac{1}{y}+ \dfrac {1}{z}=0

Cheers!

It must be mentioned that x , y , z 0 x,y,z \neq 0 .

Nihar Mahajan - 6 years ago

Log in to reply

Thanks. I have edited it. :)

Mehul Arora - 6 years ago

Where do you live in India

Robin Singh - 6 years ago

Log in to reply

Me? Or Nihar?

Mehul Arora - 6 years ago
Sai Ram
Oct 6, 2015

There is another way of doing it.

But I think Mehul's solution is easier.

Let 2 x = 3 y = 6 z = k 2^x = 3^y = 6^{-z} = k

Then, 2 x = k , 3 y = k , 6 z = k . 2^x = k , 3^y = k , 6^{-z} = k.

Applying log ,

log 2 k = x \log_{2}k = x , log 3 k = y \log_{3}k = y , log 6 k = z \log_{6}k = -z

Now ,

1 x + 1 y + 1 z = 1 x + 1 y ( 1 z ) = 1 x + 1 y 1 ( z ) \dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z} = \dfrac{1}{x} + \dfrac{1}{y} -(-\dfrac{1}{z}) = \dfrac{1}{x} + \dfrac{1}{y} - \dfrac{1}{(-z)}

Substituting the values ,

1 x + 1 y 1 ( z ) = 1 log 2 k + 1 log 3 k 1 log 6 k = log k 2 + log k 3 log k 6 = log k 6 log k 6 = 0 \dfrac{1}{x} + \dfrac{1}{y} - \dfrac{1}{(-z)} = \dfrac{1}{\log_{2}k} + \dfrac{1}{\log_{3}k} - \dfrac{1}{\log_{6}k} = \log_{k}2 + \log_{k}3 - \log_{k}{6} = \log_{k}6 - \log_{k}6 = \boxed{\boxed{0}}

Hope it helps.

Cheers!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...