Looks like standard limit form

Calculus Level pending

If ω n = 1 ( n 1 ) 3 + ( n 2 ) 5 + ( 1 ) n ( n n ) 2 n + 1 , \omega_n =1 -\dfrac{\binom{n}{1}}{3} +\dfrac{\binom{n}{2}}{5} -\cdots + \dfrac{(-1)^n\binom{n}{n}}{2n+1},

then find lim n ( 1 + ω n n n ! ) n ! e n \displaystyle \lim_{n\to\infty} \left(1+\dfrac{\sqrt[n]{\omega_n}}{n!}\right)^{\frac{n!}{e^n}} .

Source: Romanian Mathematical Magazine and Proposed by Florică Anastase , Romania.


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 27, 2019

By binomial theorem :

( 1 x 2 ) n = k = 0 n ( 1 ) k ( n k ) x 2 k 0 1 ( 1 x 2 ) n d x = k = 0 n ( 1 ) k ( n k ) 2 k + 1 ω n = 0 1 ( 1 x 2 ) n d x Let t = x 2 d t = 2 x d x = 0 1 t 1 2 ( 1 t ) n 2 d t = B ( 1 2 , n + 1 ) 2 where B ( ) denotes the beta function. = Γ ( 1 2 ) Γ ( n + 1 ) 2 Γ ( n + 3 2 ) where Γ ( ) denotes the gamma function. = 2 n n ! ( 2 n + 1 ) ! ! = ( 2 n ) ! ! ( 2 n + 1 ) ! ! < 1 \begin{aligned} (1-x^2)^n & = \sum_{k=0}^n (-1)^k \binom nk x^{2k} \\ \int_0^1 (1-x^2)^n dx & = \color{#3D99F6} \sum_{k=0}^n \frac {(-1)^k \binom nk}{2k+1} \\ \implies \color{#3D99F6} \omega_n & = \int_0^1 (1-x^2)^n dx & \small \color{#3D99F6} \text{Let }t = x^2 \implies dt = 2x \ dx \\ & = \int_0^1 \frac {t^{-\frac 12}(1-t)^n}2 dt \\ & = \frac {\text{B}\left(\frac 12, n+1\right)}2 & \small \color{#3D99F6} \text{where }\text{B}(\cdot) \text{ denotes the beta function.} \\ & = \frac {\Gamma \left(\frac 12\right) \Gamma(n+1)}{2 \Gamma \left(n+\frac 32\right)} & \small \color{#3D99F6} \text{where }\Gamma (\cdot) \text{ denotes the gamma function.} \\ & = \frac {2^n n!}{(2n+1)!!} \\ & = \frac {(2n)!!}{(2n+1)!!} < 1 \end{aligned}

Since ω n < 1 \omega_n < 1 , lim n ω n n = 0 \implies \displaystyle \lim_{n \to \infty} \sqrt[n] {\omega_n} = 0 and by Stirling's formula lim n n ! e n lim n 2 π n ( n e 2 ) n = \displaystyle \lim_{n \to \infty} \frac {n!}{e^n} \sim \lim_{n \to \infty} \sqrt{2\pi n}\left(\frac n{e^2}\right)^n = \infty .

L = lim n ( 1 + ω n n n ! ) n ! e n A 1 case = exp ( lim n ω n n e n ) lim x f ( x ) g ( x ) = e lim x g ( x ) ( f ( x ) 1 ) = e 0 = 1 Since lim n ω n n = 0 \begin{aligned} L & = \lim_{n \to \infty} \left(1+\frac {\sqrt[n]{\omega_n}}{n!} \right)^\frac {n!}{e^n} & \small \color{#3D99F6} \text{A }1^\infty \text{ case} \\ & = \exp \left(\lim_{n \to \infty} \frac {\sqrt[n]{\omega_n}}{e^n}\right) & \small \color{#3D99F6} \implies \lim_{x \to \infty} f(x)^{g(x)} = e^{\lim_{x \to \infty} g(x)(f(x)-1)} \\ & = e^0 = \boxed 1 & \small \color{#3D99F6} \text{Since }\lim_{n \to \infty} \sqrt[n] {\omega_n} = 0 \end{aligned}


References:

Naren Bhandari
Sep 27, 2019

We can solve ω n \omega_n in different ways here is one of my approach ω n = k = 0 n ( 1 ) k ( n k ) 1 2 k + 1 = k = 0 n ( 1 ) k ( n k ) 0 1 x 2 k d x = 0 1 ( k = 0 n ( 1 ) k ( n k ) x 2 k ) d x = 0 1 ( 1 x 2 ) n d x = x 2 x 0 1 ( 1 x ) n x 1 2 d x = 1 2 [ Γ ( n + 1 ) Γ ( n + 3 2 ) Γ ( 1 2 ) ] = 1 2 [ n ! π ( 2 n + 1 ) ! ! π 2 n + 1 ] = 2 n n ! ( 2 n + 1 ) ! ! = 4 n ( n ! ) 2 ( 2 n + 1 ) ! \omega_n= \sum_{k=0}^{n}(-1)^k \binom{n}{k} \dfrac{1}{2k+1} = \sum_{k=0}^{n}(-1)^k \binom{n}{k} \int_0^1 x^{2k}\,dx \\ =\int_0^1 \left(\sum_{k=0}^{n} (-1)^k \binom{n}{k} x^{2k}\right)\,dx=\int_0^1 (1-x^2)^n \,dx \\ =^{x^2 \to x} \int_0^1 (1-x)^n x^{-\frac{1}{2}}\,dx= \dfrac{1}{2}\left[\dfrac{\Gamma (n+1) }{\Gamma \left(n+\frac{3}{2}\right)}\Gamma\left(\frac{1}{2}\right)\right]\\ =\dfrac{1}{2}\left[ \dfrac{n!\sqrt {\pi}}{\dfrac{(2n+1)!!\sqrt \pi }{2^{n+1}}}\right]=\dfrac{2^n n! }{(2n+1)!!}= \dfrac{4^n (n!)^2}{(2n+1)!}

Now we solve for Ω = lim n ( 1 + ω n n n ! ) n ! e n = exp ( lim n ω n n e n ) = exp ( lim n 4 ( 2 n + 1 ) n e n ( n ! ) 2 ( 2 n ) ! n ) exp ( lim n 4 2 n + 1 n e n n π 2 n 4 ) = exp ( lim n π 2 n e n ) = e 0 = 1 \Omega =\lim_{n\to \infty} \left(1+\frac{\sqrt[n]{\omega_n}}{n!}\right)^{\frac{n!}{e^n}} =\exp\left(\lim_{n\to \infty} \dfrac{\sqrt[n]{\omega_n}}{e^n}\right) \\=\exp\left(\lim_{n\to \infty} \dfrac{4}{\sqrt[n]{(2n+1)}e^n }\sqrt[n]{\frac{(n!)^2}{(2n)!}}\right)\\ \sim \small{\exp\left(\lim_{n\to \infty} \dfrac{4}{\sqrt[n]{2n+1}e^n}\dfrac{\sqrt[2n]{n\pi}}{4} \right) =\exp\left(\lim_{n\to \infty} \dfrac{\sqrt[2n]{\pi}}{e^n}\right)=e^0=1} Note for all k 1 k\geq 1 inductively we can show that 1 n 1 k n n 1 n lim n 1 lim n n 1 k n lim n n 1 n = 1 \ 1 \leq n^{\frac{1} {kn}}\leq n^{\frac{1}{n}}\\ \therefore \lim_{n\to \infty} 1 \leq \lim_{n\to \infty} n^{\frac{1}{kn}}\leq \lim_{n\to \infty} n^{\frac{1}{n}} =1 Set k = 2 k=2 and hence by Squeeze theorem lim n n 1 2 n = 1 \lim_{n\to\infty} n^{\frac{1}{2n}}=1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...