If ω n = 1 − 3 ( 1 n ) + 5 ( 2 n ) − ⋯ + 2 n + 1 ( − 1 ) n ( n n ) ,
then find n → ∞ lim ( 1 + n ! n ω n ) e n n ! .
Source: Romanian Mathematical Magazine and Proposed by Florică Anastase , Romania.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We can solve ω n in different ways here is one of my approach ω n = k = 0 ∑ n ( − 1 ) k ( k n ) 2 k + 1 1 = k = 0 ∑ n ( − 1 ) k ( k n ) ∫ 0 1 x 2 k d x = ∫ 0 1 ( k = 0 ∑ n ( − 1 ) k ( k n ) x 2 k ) d x = ∫ 0 1 ( 1 − x 2 ) n d x = x 2 → x ∫ 0 1 ( 1 − x ) n x − 2 1 d x = 2 1 [ Γ ( n + 2 3 ) Γ ( n + 1 ) Γ ( 2 1 ) ] = 2 1 ⎣ ⎢ ⎡ 2 n + 1 ( 2 n + 1 ) ! ! π n ! π ⎦ ⎥ ⎤ = ( 2 n + 1 ) ! ! 2 n n ! = ( 2 n + 1 ) ! 4 n ( n ! ) 2
Now we solve for Ω = n → ∞ lim ( 1 + n ! n ω n ) e n n ! = exp ( n → ∞ lim e n n ω n ) = exp ( n → ∞ lim n ( 2 n + 1 ) e n 4 n ( 2 n ) ! ( n ! ) 2 ) ∼ exp ( n → ∞ lim n 2 n + 1 e n 4 4 2 n n π ) = exp ( n → ∞ lim e n 2 n π ) = e 0 = 1 Note for all k ≥ 1 inductively we can show that 1 ≤ n k n 1 ≤ n n 1 ∴ n → ∞ lim 1 ≤ n → ∞ lim n k n 1 ≤ n → ∞ lim n n 1 = 1 Set k = 2 and hence by Squeeze theorem lim n → ∞ n 2 n 1 = 1
Problem Loading...
Note Loading...
Set Loading...
By binomial theorem :
( 1 − x 2 ) n ∫ 0 1 ( 1 − x 2 ) n d x ⟹ ω n = k = 0 ∑ n ( − 1 ) k ( k n ) x 2 k = k = 0 ∑ n 2 k + 1 ( − 1 ) k ( k n ) = ∫ 0 1 ( 1 − x 2 ) n d x = ∫ 0 1 2 t − 2 1 ( 1 − t ) n d t = 2 B ( 2 1 , n + 1 ) = 2 Γ ( n + 2 3 ) Γ ( 2 1 ) Γ ( n + 1 ) = ( 2 n + 1 ) ! ! 2 n n ! = ( 2 n + 1 ) ! ! ( 2 n ) ! ! < 1 Let t = x 2 ⟹ d t = 2 x d x where B ( ⋅ ) denotes the beta function. where Γ ( ⋅ ) denotes the gamma function.
Since ω n < 1 , ⟹ n → ∞ lim n ω n = 0 and by Stirling's formula n → ∞ lim e n n ! ∼ n → ∞ lim 2 π n ( e 2 n ) n = ∞ .
L = n → ∞ lim ( 1 + n ! n ω n ) e n n ! = exp ( n → ∞ lim e n n ω n ) = e 0 = 1 A 1 ∞ case ⟹ x → ∞ lim f ( x ) g ( x ) = e lim x → ∞ g ( x ) ( f ( x ) − 1 ) Since n → ∞ lim n ω n = 0
References: