Looks small

Determine the smallest positive prime p p which satisfies the congruence p + p 1 25 ( m o d 143 ) p + p^{-1} \equiv 25 \pmod{143} .

Here, p 1 p^{-1} as usual denotes multiplicative inverse.


The answer is 269.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Solving the given modular equation is equivalent to solving the equation p 2 + 1 25 p m o d 143 p^2+1\equiv 25p \mod 143 Now, note that, we can reduce the given equation to the following: 11 ( p 2 + p + 1 ) 0 m o d 143 11(p^2+p+1)\equiv 0\mod 143 Since 143 = 11 × 13 143=11\times 13 , it follows that p 2 + p + 1 0 m o d 13 p^2+p+1\equiv 0\mod 13 . This implies that p 3 p\equiv 3 , or p 9 m o d 13 p\equiv 9\ \mod 13 . Now, if p = 13 k + 3 p= 13k+3 , from the equivalent of the given condition, we find, 13 k 2 19 k 5 0 m o d 11 k 2 + ( k 4 ) 2 10 m o d 11 k 1 , 3 m o d 11 13k^2-19k-5\equiv 0\mod 11\implies k^2+(k-4)^2\equiv 10\mod 11\implies k\equiv 1,3\mod 11 . Similarly, if p = 13 k + 9 p=13k+9 , we find, 13 k 2 7 k 11 0 m o d 11 2 k 2 7 k 0 m o d 11 k 0 , 9 m o d 11 13k^2-7k-11\equiv 0\mod 11\implies 2k^2-7k\equiv 0\mod 11\implies k\equiv 0,9\mod 11 . Thus, we find that p 13 k + a 9 , 16 , 42 , 126 m o d 143 p\equiv 13k+a\equiv 9,16,42,126\mod 143 . An easy search then reveals that 269 269 is the smallest prime number of this form. Thus the answer is 269 \boxed{269} .

@Samrat Mukhopadhyay Hello, how to find p 3 p\equiv 3 or p 9 m o d 13 p\equiv 9 \mod 13 from p 2 + p + 1 0 m o d 13 p^2+p+1\equiv 0 \mod 13 ? How to solve these type of equation?

Dexter Woo Teng Koon - 3 years, 11 months ago

Log in to reply

Note that p 2 + p + 1 0 ( m o d 13 ) p^2+p+1\equiv 0\pmod{13} is equivalent to ( 2 p + 1 ) 2 10 ( m o d 13 ) 2 p + 1 6 , 7 (2p+1)^2\equiv 10\pmod{13}\implies 2p+1\equiv 6,7 which implies that p 3 p\equiv 3 or p 9 ( m o d 13 ) p\equiv 9\pmod{13} .

Samrat Mukhopadhyay - 3 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...