Looks tough! [part 3]

Algebra Level 4

1 + 4 x + 7 x 2 + 10 x 3 + = 35 16 \large 1 + 4x + 7x^2 + 10x^3 + \cdots = \dfrac{35}{16}

Find the value of x x satisfying the equation above. If x x is in the form of a b \dfrac ab where a a and b b are positive integers with gcd ( a , b ) = 1 \gcd(a,b)=1 , submit your answer as a + b a+b .

Hint : The series is an arithmetic-geometric progression .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Feb 17, 2016

S = 1 + 4 x + 7 x 2 + 10 x 3 + \mathfrak{S}=1+4x+7x^2+10x^3+\dots~~~ x S = x + 4 x 2 + 7 x 3 + 10 x 4 x\mathfrak{S}=~~~~~~x+4x^2+7x^3+10x^4 Substracting we get: ( 1 x ) S = 1 + 3 x ( 1 + x 2 + x 3 + x 4 + ) (1-x)\mathfrak{S}=1+3x(\color{forestgreen}{1+x^2+x^3+x^4+\dots}) (Infinite GP) ( ) \color{#D61F06}{\mathcal{\text{(Infinite GP)}}}\Large\color{#302B94}{(*)} S = 1 + 3 x ( 1 x ) = 2 x + 1 1 x \large \Rightarrow \mathfrak{S}=1+\frac{3x}{\color{forestgreen}{(1-x)}}=\dfrac{2x+1}{1-x} Placing S = 35 16 \mathfrak{S}=\frac{35}{16} and rearranging we get : 35 x 2 102 x + 19 = 0 \Large 35x^2-102x+19=0 Using Quadratic Formula we get x = 1 5 x=\frac{1}{5} (Other value of x is rejected since it was greater than one!!) 1 + 5 = 6 \huge \therefore~1+5=\boxed{\color{#007fff}{6}}


N O T E : For S to converge |x|<1 that’s why series written in Green is an infinite GP with common difference x< 1 \boxed{\color{#302B94}{*\mathfrak{NOTE:-}}\\ \text{For }\mathfrak{S} \text{ to converge |x|<1 that's why}\\\text{ series written in Green }\\ \text{is an infinite GP with common difference x< 1}}

Your solutions are always cool !!

Akshat Sharda - 5 years, 3 months ago

Log in to reply

T H A N K S \Large\color{#D61F06}{\mathcal{THANKS}}

Rishabh Jain - 5 years, 3 months ago

Using the formula from wiki notes,
1 1 r + d r ( 1 r ) 2 = 1 1 x + 3 x ( 1 x ) 2 = 35 16 , r < 1. S o l v i n g t h e r e s u l t i n g q u a d r i c e q u a t i o n , 35 x 2 102 x + 19 = 0 , w e g e t x = 1 5 . a + b = 6 \dfrac 1 {1-r} + \dfrac {d*r}{(1 - r)^2} = \dfrac 1 {1-x} + \dfrac {3*x}{(1 - x)^2}=\dfrac {35}{16} , ~ |r|<1.\\ Solving ~ the ~ resulting ~ quadric ~ equation, 35x^2-102x+19=0, ~ we ~ get ~ x=\dfrac 1 5.\\a+b=6

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...