Logarithm challenge - Find the value

Algebra Level 3

lim n 0.1 6 log 2.5 ( 1 3 + 1 3 2 + 1 3 3 + + 1 3 n ) = ? \large \lim_{n \to \infty} 0.16^{\log_{2.5}\left( \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \cdots + \frac{1}{3^n} \right)} = \, ?


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 31, 2016

L = lim n 0.1 6 log 2.5 ( 1 3 + 1 3 2 + 1 3 3 + + 1 3 n ) = lim n 0.1 6 log 2.5 ( k = 1 n ( 1 3 ) k ) = 0.1 6 log 2.5 ( 1 3 1 1 1 3 ) = 0.1 6 log 2.5 ( 1 2 ) = ( 4 25 ) log 5 2 2 = ( 2 5 ) 2 log 5 2 2 = ( 5 2 ) 2 log 5 2 2 = ( 5 2 ) log 5 2 4 = 4 \begin{aligned} \mathscr L & = \lim_{n \to \infty} 0.16^{\log_{2.5} \left(\frac13 + \frac1{3^2} + \frac1{3^3} + \cdots + \frac1{3^n} \right)} \\ & = \lim_{n \to \infty} 0.16^{\log_{2.5} \left(\sum_{k=1}^n \left(\frac13 \right)^k\right)} \\ & = 0.16^{\log_{2.5} \left(\frac13 \cdot \frac1{1-\frac13} \right)} \\ & = 0.16^{\log_{2.5} \left(\frac12 \right)} \\ & = \left(\frac{4}{25} \right)^{-\log_\frac{5}{2} 2} \\ & = \left(\frac{2}{5} \right)^{-2 \log_\frac{5}{2} 2} \\ & = \left(\frac52 \right)^{2 \log_\frac52 2} \\ & = \left(\frac52 \right)^{\log_\frac52 4} \\ & = \boxed{4} \end{aligned}

This is a brilliant solution. :)

Paulo Filho - 5 years ago

Log in to reply

Indeed Brilliant!!!

Thank you for answering my question.

Awesome solution, but I cannot figure out the sum simplification... Could someone explain it to me?

Sebastiano Fregnan - 5 years ago

Log in to reply

Same soln sir ✌

Dipak Prajapati - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...