Find the value of lo g 2 [ 2 3 4 4 8 5 … ( 2 2 3 ) 2 5 ] .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
1
⋅
3
+
2
⋅
4
+
⋯
+
n
⋅
(
n
+
2
)
=
1
⋅
3
+
2
⋅
4
+
⋯
+
(
n
2
+
2
n
)
=
∑
1
2
3
(
n
2
+
2
n
)
=
6
n
⋅
(
n
+
1
)
⋅
(
2
n
+
1
)
+
2
⋅
2
n
⋅
(
n
+
1
)
=
6
n
⋅
(
n
+
1
)
⋅
(
2
n
+
7
)
The formula you have given is not so common. I have shown how to get the formula.
This formulae is not from advanced algebra.Keep in mind.
lo g 2 [ 2 3 4 4 8 5 . . . ( 2 2 3 ) 2 5 ] T h e p a t t e r n g o e s l i k e t h i s . 2 3 , 2 8 , 2 1 5 , . . . , ( 2 2 3 ) 2 5 W e m u s t f i n d t h e s u m o f t h e e x p o n e n t s . T h e e x p o n e n t s a r e i n a s e q u e n c e . L e t { a n } : 3 , 8 , 1 5 , . . . , 5 7 5 L e t { b n } : a n + 1 − a n { b n } : 5 , 7 , 9 , . . . F i n d i n g t h e g e n e r a l t e r m o f { b n } , { b n } : 2 n + 3 U s i n g t h e f o r m u l a , a n = a 1 + ∑ k = 1 n − 1 b k a n = 3 + ∑ k = 1 n − 1 ( 2 k + 3 ) = 3 + 2 ∑ k = 1 n − 1 k + 3 ∑ k = 1 n − 1 1 = 3 + n ( n − 1 ) + 3 ( n − 1 ) = 3 + n 2 − n + 3 n − 3 = n 2 + 2 n S o t h e g e n e r a l t e r m o f a n i s a n = n 2 + 2 n T h e l a s t t e r m o f a n i s 5 7 5 , w h i c h i s t h e 2 3 r d t e r m . F i n d i n g t h e s u m o f t h e e x p o n e n t s ( o r a n ) , ∑ n = 1 2 3 n 2 + 2 ∑ n = 1 2 3 n = 6 2 3 ( 2 4 ) ( 4 7 ) + ( 2 3 ) ( 2 4 ) = 4 3 2 4 + 5 5 2 = 4 8 7 6 S o lo g 2 [ 2 3 4 4 8 5 . . . ( 2 2 3 ) 2 5 ] = lo g 2 2 4 8 7 6 T h e r e f o r e , lo g 2 [ 2 3 4 4 8 5 . . . ( 2 2 3 ) 2 5 ] = lo g 2 2 4 8 7 6 = 4 8 7 6
First rewrite it as a summation: sum(1:23) logbase 2 of (2^(x^(x+2))) sum(1:23) logbase 2 of (2^(x(x+2)) then sum(1:23) x(x+2)logbase 2 of 2 = sum(1:23) x(x+2) = sum(1:23) x^2 + 2 sum(1:23) x = [23 (23+1) (2 (23)+1)]/6 + 2*[23(23+1)]/2 = 4324 + 552 = 4876
F
i
r
s
t
r
e
w
r
i
t
e
i
t
a
s
a
s
u
m
m
a
t
i
o
n
:
∑
1
2
3
lo
g
2
2
x
(
x
+
2
)
=
∑
1
2
3
x
(
x
+
2
)
lo
g
2
2
t
h
e
n
∑
1
2
3
x
(
x
+
2
)
=
∑
1
2
3
(
x
2
+
2
x
)
=
∑
1
2
3
x
2
+
2
∑
1
2
3
x
=
6
2
3
(
2
3
+
1
)
(
2
(
2
3
)
+
1
)
+
2
∗
2
2
3
(
2
3
+
1
)
=
4
3
2
4
+
5
5
2
=
4
8
7
6
I have just rendered your solution in Latex. Your solution is simple and short. Congratulations.
nice solution @anna Anant
Problem Loading...
Note Loading...
Set Loading...
Applying properties of logarithms, lo g 2 [ 2 3 4 4 8 5 … ( 2 2 3 ) 2 5 ] = lo g 2 2 3 + lo g 2 4 4 + lo g 2 8 5 + ⋯ + lo g 2 ( 2 2 3 ) 2 5 = 1 ⋅ 3 + 2 ⋅ 4 + 3 ⋅ 5 + ⋯ + 2 3 ⋅ 2 5 . Recall from an advanced algebra course that 1 ⋅ 3 + 2 ⋅ 4 + ⋯ + n ⋅ ( n + 2 ) = 6 n ( n + 1 ) ( 2 n + 7 ) . So, with n = 2 3 , we have lo g 2 [ 2 3 4 4 8 5 … ( 2 2 3 ) 2 5 ] = 6 2 3 ( 2 3 + 1 ) [ 2 ( 2 3 ) + 7 ] = 6 2 3 ( 2 4 ) ( 5 3 ) = 4 8 7 6 .