Looooooooooooog-ARITHMS!

Algebra Level 3

Find the value of log 2 [ 2 3 4 4 8 5 ( 2 23 ) 25 ] . \log_2 [ 2^3 4^4 8^5 \dots (2^{23})^{25} ].


The answer is 4876.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Martin Soliman
Dec 24, 2014

Applying properties of logarithms, log 2 [ 2 3 4 4 8 5 ( 2 23 ) 25 ] = log 2 2 3 + log 2 4 4 + log 2 8 5 + + log 2 ( 2 23 ) 25 = 1 3 + 2 4 + 3 5 + + 23 25. \log_2 [ 2^3 4^4 8^5 \dots (2^{23})^{25} ] = \log_2 2^3 + \log_2 4^4 + \log_2 8^5 + \dots + \log_2 (2^{23})^{25} = 1 \cdot 3 + 2 \cdot 4 + 3 \cdot 5 + \dots + 23 \cdot 25. Recall from an advanced algebra course that 1 3 + 2 4 + + n ( n + 2 ) = n ( n + 1 ) ( 2 n + 7 ) 6 . 1 \cdot 3 + 2 \cdot 4 + \dots + n \cdot (n + 2) = \frac{n (n + 1) (2n + 7)}{6}. So, with n = 23 n = 23 , we have log 2 [ 2 3 4 4 8 5 ( 2 23 ) 25 ] = 23 ( 23 + 1 ) [ 2 ( 23 ) + 7 ] 6 = 23 ( 24 ) ( 53 ) 6 = 4876 . \log_2 [ 2^3 4^4 8^5 \dots ( 2^{23})^{25} ] = \frac{23 (23 + 1)[2(23) + 7]}{6} = \frac{23(24)(53)}{6} = \boxed{4876}.

1 3 + 2 4 + + n ( n + 2 ) = 1 3 + 2 4 + + ( n 2 + 2 n ) = 1 23 ( n 2 + 2 n ) = n ( n + 1 ) ( 2 n + 1 ) 6 + 2 n ( n + 1 ) 2 = n ( n + 1 ) ( 2 n + 7 ) 6 1\cdot3+2\cdot4+\dots +n\cdot(n+2) =1\cdot3+2\cdot4+\dots +(n^2+2n)\\ \\=\sum_1^{23}(n^2+2n)=\dfrac{n\cdot(n+1)\cdot (2n+1)}{6} +2\cdot\dfrac{n\cdot(n+1)}{2} \\= \dfrac{n\cdot(n+1)\cdot (2n+7)}{6} \\~~~\\
The formula you have given is not so common. I have shown how to get the formula.

Niranjan Khanderia - 6 years, 5 months ago

This formulae is not from advanced algebra.Keep in mind.

D K - 2 years, 10 months ago
Justin Tuazon
Dec 24, 2014

log 2 [ 2 3 4 4 8 5 . . . ( 2 23 ) 25 ] T h e p a t t e r n g o e s l i k e t h i s . 2 3 , 2 8 , 2 15 , . . . , ( 2 23 ) 25 W e m u s t f i n d t h e s u m o f t h e e x p o n e n t s . T h e e x p o n e n t s a r e i n a s e q u e n c e . L e t { a n } : 3 , 8 , 15 , . . . , 575 L e t { b n } : a n + 1 a n { b n } : 5 , 7 , 9 , . . . F i n d i n g t h e g e n e r a l t e r m o f { b n } , { b n } : 2 n + 3 U s i n g t h e f o r m u l a , a n = a 1 + k = 1 n 1 b k a n = 3 + k = 1 n 1 ( 2 k + 3 ) = 3 + 2 k = 1 n 1 k + 3 k = 1 n 1 1 = 3 + n ( n 1 ) + 3 ( n 1 ) = 3 + n 2 n + 3 n 3 = n 2 + 2 n S o t h e g e n e r a l t e r m o f a n i s a n = n 2 + 2 n T h e l a s t t e r m o f a n i s 575 , w h i c h i s t h e 23 r d t e r m . F i n d i n g t h e s u m o f t h e e x p o n e n t s ( o r a n ) , n = 1 23 n 2 + 2 n = 1 23 n = 23 ( 24 ) ( 47 ) 6 + ( 23 ) ( 24 ) = 4324 + 552 = 4876 S o log 2 [ 2 3 4 4 8 5 . . . ( 2 23 ) 25 ] = log 2 2 4876 T h e r e f o r e , log 2 [ 2 3 4 4 8 5 . . . ( 2 23 ) 25 ] = log 2 2 4876 = 4876 \log _{ 2 }{ [{ 2 }^{ 3 }{ 4 }^{ 4 }{ 8 }^{ 5 }...{ ({ 2 }^{ 23 }) }^{ 25 }] } \\ The\quad pattern\quad goes\quad like\quad this.\\ { 2 }^{ 3 },\quad { 2 }^{ 8 },\quad { 2 }^{ 15 },\quad ...\quad ,\quad { (2^{ 23 }) }^{ 25 }\\ We\quad must\quad find\quad the\quad sum\quad of\quad the\quad exponents.\\ The\quad exponents\quad are\quad in\quad a\quad sequence.\\ Let\quad \{ { a }_{ n }\} :3,\quad 8,\quad 15,\quad ...,\quad 575\\ Let\quad \{ b_{ n }\} :{ a }_{ n+1 }-{ a }_{ n }\\ \{ { b }_{ n }\} :\quad 5,\quad 7,\quad 9,\quad ...\\ Finding\quad the\quad general\quad term\quad of\quad \{ { b }_{ n }\} ,\\ \{ { b }_{ n }\} :\quad 2n+3\\ Using\quad the\quad formula,\\ { a }_{ n }={ a }_{ 1 }+\sum _{ k=1 }^{ n-1 }{ { b }_{ k } } \\ { a }_{ n }=3+\sum _{ k=1 }^{ n-1 }{ (2k+3) } \\ =3+2\sum _{ k=1 }^{ n-1 }{ k } +3\sum _{ k=1 }^{ n-1 }{ 1 } \\ =3+n(n-1)+3(n-1)\\ =3+{ n }^{ 2 }-n+3n-3={ n }^{ 2 }+2n\\ So\quad the\quad general\quad term\quad of\quad { a }_{ n }\quad is\\ { a }_{ n }={ n }^{ 2 }+2n\\ The\quad last\quad term\quad of\quad { a }_{ n }\quad is\quad 575,\quad which\quad is\quad the\quad 23rd\quad term.\\ Finding\quad the\quad sum\quad of\quad the\quad exponents\quad (or\quad { a }_{ n }),\\ \sum _{ n=1 }^{ 23 }{ { n }^{ 2 } } +2\sum _{ n=1 }^{ 23 }{ n } \\ =\frac { 23(24)(47) }{ 6 } +(23)(24)\\ =4324+552=4876\\ \\ So\\ \log _{ 2 }{ [{ 2 }^{ 3 }{ 4 }^{ 4 }{ 8 }^{ 5 }...{ ({ 2 }^{ 23 }) }^{ 25 }]=\log _{ 2 }{ { 2 }^{ 4876 } } } \\ \\ \boxed { Therefore,\quad \log _{ 2 }{ [{ 2 }^{ 3 }{ 4 }^{ 4 }{ 8 }^{ 5 }...{ ({ 2 }^{ 23 }) }^{ 25 }]=\log _{ 2 }{ { 2 }^{ 4876 } } } =4876\quad } \\ \\ \\ \\ \\ \\

Anna Anant
Jan 2, 2015

First rewrite it as a summation: sum(1:23) logbase 2 of (2^(x^(x+2))) sum(1:23) logbase 2 of (2^(x(x+2)) then sum(1:23) x(x+2)logbase 2 of 2 = sum(1:23) x(x+2) = sum(1:23) x^2 + 2 sum(1:23) x = [23 (23+1) (2 (23)+1)]/6 + 2*[23(23+1)]/2 = 4324 + 552 = 4876

F i r s t r e w r i t e i t a s a s u m m a t i o n : 1 23 log 2 2 x ( x + 2 ) = 1 23 x ( x + 2 ) log 2 2 t h e n 1 23 x ( x + 2 ) = 1 23 ( x 2 + 2 x ) = 1 23 x 2 + 2 1 23 x First~ rewrite~ it~ as~ a ~summation: \sum_1^{23} \log_2 2^{x(x+2)} \\=\sum_1^{23}x(x+2)\log_2 2~\\then~ \sum_1^{23} x(x+2) = \sum_1^{23} (x^2+2x) \\= \sum_1^{23} x^2 + 2\sum_1^{23} x \\
= 23 ( 23 + 1 ) ( 2 ( 23 ) + 1 ) 6 + 2 23 ( 23 + 1 ) 2 = 4324 + 552 = 4876 =\dfrac{23(23+1)( 2(23)+1 )}{6 }+ 2*\dfrac{23(23+1)}{2}\\ = 4324 + 552 = \boxed {4876} \\~~~\\
I have just rendered your solution in Latex. Your solution is simple and short. Congratulations.

Niranjan Khanderia - 6 years, 5 months ago

nice solution @anna Anant

Mardokay Mosazghi - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...