⎩ ⎪ ⎨ ⎪ ⎧ X + 2 Y + 4 Z = 9 4 Y Z + 2 X Z + X Y = 1 3 X Y Z = 3
Given that X , Y and Z satisfy the system of equations above, determine the number of solutions of ( X , Y , Z ) such that at least two of X , Y , Z are integers.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
did you use vieta's formula
Log in to reply
Yes, w 3 − ( x + u + v ) w 2 + ( u v + v x + x u ) w − u v x = 0 .
I used vieta's too. Nice solution.
Problem Loading...
Note Loading...
Set Loading...
Using the usual lowercase, and let u = 2 y and v = 4 z :
⎩ ⎪ ⎨ ⎪ ⎧ x + 2 y + 4 z = 9 4 y z + 2 z x + x y = 1 3 x y z = 3 ⇒ ( 2 y ) ( 4 z ) + 4 z x + x ( 2 y ) = 2 ( 1 3 ) ⇒ x ( 2 y ) ( 4 z ) = 8 ( 3 ) ⇒ x + u + v = 9 ⇒ u v + x u + v x = 2 6 ⇒ u v x = 2 4
Using Vieta's Formulas , this implies that u , v and x are roots of:
w 3 − 9 w 2 + 2 6 w − 2 4 ( w − 2 ) ( w − 3 ) ( w − 4 ) = 0 = 0
⇒ ( x , u , v ) = ⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ ( 2 , 3 , 4 ) ( 2 , 4 , 3 ) ( 3 , 2 , 4 ) ( 3 , 4 , 2 ) ( 4 , 2 , 3 ) ( 4 , 3 , 2 ) ⇒ ( x , y , z ) = ( 2 , 2 3 , 1 ) ⇒ ( x , y , z ) = ( 2 , 2 , 4 3 ) ⇒ ( x , y , z ) = ( 3 , 1 , 1 ) ⇒ ( x , y , z ) = ( 3 , 2 , 2 1 ) ⇒ ( x , y , z ) = ( 4 , 1 , 4 3 ) ⇒ ( x , y , z ) = ( 4 , 2 3 , 2 1 ) acceptable solution acceptable solution acceptable solution acceptable solution acceptable solution unacceptable solution
Therefore, there are 5 acceptable solution.