Lost in X, Y, Z

Algebra Level 4

{ X + 2 Y + 4 Z = 9 4 Y Z + 2 X Z + X Y = 13 X Y Z = 3 \begin{cases} X+2Y+4Z=9 \\ 4YZ+2XZ+XY=13 \\ XYZ=3 \end{cases}

Given that X , Y X,Y and Z Z satisfy the system of equations above, determine the number of solutions of ( X , Y , Z ) (X,Y,Z) such that at least two of X , Y , Z X,Y,Z are integers.

4 6 2 5 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 22, 2015

Using the usual lowercase, and let u = 2 y \color{#3D99F6}{u = 2y} and v = 4 z \color{#D61F06}{v = 4z} :

{ x + 2 y + 4 z = 9 x + u + v = 9 4 y z + 2 z x + x y = 13 ( 2 y ) ( 4 z ) + 4 z x + x ( 2 y ) = 2 ( 13 ) u v + x u + v x = 26 x y z = 3 x ( 2 y ) ( 4 z ) = 8 ( 3 ) u v x = 24 \begin{cases} x + \color{#3D99F6}{2y} + \color{#D61F06}{4z} = 9 & & \Rightarrow x + \color{#3D99F6}{u} + \color{#D61F06}{v} = 9 \\ 4yz + 2zx + xy = 13 & \Rightarrow (2y)(4z)+4zx + x(2y) = 2(13) & \Rightarrow uv + xu + vx = 26 \\ xyz = 3 & \Rightarrow x(2y)(4z) = 8(3) & \Rightarrow uvx = 24 \end{cases}

Using Vieta's Formulas , this implies that u u , v v and x x are roots of:

w 3 9 w 2 + 26 w 24 = 0 ( w 2 ) ( w 3 ) ( w 4 ) = 0 \begin{aligned} w^3 - 9w^2+26w-24 & = 0 \\ (w-2)(w-3)(w-4) & = 0 \end{aligned}

( x , u , v ) = { ( 2 , 3 , 4 ) ( x , y , z ) = ( 2 , 3 2 , 1 ) acceptable solution ( 2 , 4 , 3 ) ( x , y , z ) = ( 2 , 2 , 3 4 ) acceptable solution ( 3 , 2 , 4 ) ( x , y , z ) = ( 3 , 1 , 1 ) acceptable solution ( 3 , 4 , 2 ) ( x , y , z ) = ( 3 , 2 , 1 2 ) acceptable solution ( 4 , 2 , 3 ) ( x , y , z ) = ( 4 , 1 , 3 4 ) acceptable solution ( 4 , 3 , 2 ) ( x , y , z ) = ( 4 , 3 2 , 1 2 ) unacceptable solution \Rightarrow (x,u,v) = \begin{cases} (2, 3,4) & \Rightarrow (x,y,z) = \left(2,\frac{3}{2},1 \right) & \color{#3D99F6}{\text{acceptable solution}} \\ (2,4,3) & \Rightarrow (x,y,z) = \left(2,2,\frac{3}{4} \right) & \color{#3D99F6}{\text{acceptable solution}} \\ (3,2,4) & \Rightarrow (x,y,z) = \left(3,1,1 \right) & \color{#3D99F6}{\text{acceptable solution}} \\ (3,4,2) & \Rightarrow (x,y,z) = \left(3,2,\frac{1}{2} \right) & \color{#3D99F6}{\text{acceptable solution}} \\ (4,2,3) & \Rightarrow (x,y,z) = \left(4,1,\frac{3}{4} \right) & \color{#3D99F6}{\text{acceptable solution}} \\ (4,3,2) & \Rightarrow (x,y,z) = \left(4,\frac{3}{2},\frac{1}{2} \right) & \color{#D61F06}{\text{unacceptable solution}} \end{cases}

Therefore, there are 5 \color{#3D99F6}{\boxed{5}} acceptable solution.

did you use vieta's formula

Manvendra Singh - 5 years, 6 months ago

Log in to reply

Yes, w 3 ( x + u + v ) w 2 + ( u v + v x + x u ) w u v x = 0 w^3 -(x+u+v)w^2+(uv+vx+xu)w-uvx=0 .

Chew-Seong Cheong - 5 years, 6 months ago

Log in to reply

Oh!thanks sir

Manvendra Singh - 5 years, 6 months ago

I used vieta's too. Nice solution.

Shreyash Rai - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...