Lost Logarithm II

Algebra Level 3

Which of the following relation is true for positive real numbers a a , b b and x x

A : log a b x = log x a log x b log x a + log x b \log_{ab} x =\dfrac{\log_x a\log_x b}{\log_xa+\log_xb}

B : log a b x = log a x log b x log x a + log x a \log_{ab} x =\dfrac{\log_a x\log_b x}{\log_xa+\log_xa}

C : log a b x = log x a log x b log a x + log b x \log_{ab} x =\dfrac{\log_x a\log_x b}{\log_ax+\log_bx}

D : log a b x = log a x log b x log a x + log b x \log_{ab} x =\dfrac{\log_a x\log_b x}{\log_ax+\log_bx}

D A B C

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Danish Ahmed
Feb 28, 2015

log a x log b x log a x + log b x \dfrac{\log_{a}x\log_{b}x}{\log_{a}x+\log_{b}x}

= log x log a log x log b log x log a + log x log b =\dfrac{\dfrac{\log x}{\log a}\dfrac{\log x}{\log b}}{\dfrac{\log x}{\log a}+\dfrac{\log x}{\log b}}

= log x log a log b log a + log b log a log b = log x log a + log b = log x log a b = log a b x =\dfrac{\dfrac{\log x}{\log a\log b}}{\dfrac{\log a+\log b}{\log a\log b}}=\dfrac{\log x}{\log a+\log b}=\dfrac{\log x}{\log ab}=\log_{ab}x

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...