x y = 1 0 a , y z = 1 0 b , x z = 1 0 c
Consider the system of equations above, what is lo g x + lo g y + lo g z ?
Details and Assumptions :
The logarithms have base of 1 0
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Wow! Nice solution!
Given, xy=10^a
log(xy)=log10^a (Taking log of each side)
log x + log y= a .............(1)
So we can say respectively,
log y + log z= b ..........(2)
log z + log x= c ...........(3)
(1)+(2)+(3) we get,
log x + logy + logy + log z + log z +log x =a+b+c
2(log x + logy + log z) = a+b+c
log x + logy + log z = (a+b+c)/2
(xy)(yz)(xz) = 10^(a + b + c)
(xyz)^2 = 10^(a + b + c)
2log(xyz) = a + b + c
log(xyz) = (a + b + c)/2
log x + log y + log z = ( a + b + c)/2
Sir ,please tell me that log(xyz)=logx +log y + log z ?????
(x^2) (y^2) (z^2)=10^a+b+c
log(x^2) (y^2) (z^2)=a+b+c
2log(xyz)=a+b+c
log(xyz)=(a+b+c)/2
log x+log y+log z=(a+b+c)/2
log x+log y+log y+log z+log z+log x= a log10+b log10+c log10. or,2(log x+log y+log z)=a+b+c. or,log x+log y+log z=(a+b+c)/2
logx+logy=a logy+logz=b logx+logz=c adding these 3 2logx+2logy+2logz=a+b+c 2(logx+logy+logz)=a+b+c logx+logy+logz=a+b+c/2
log x+log y = a log 10 .........(1) log y+log z= b log 10 .........(2) log x+log z = c log 10 .........(3) summing (1).(2).(3) 2 log x+ 2 log y+ 2 log z= a + b + c dividing by 2 log x+ log y+ log z= (a + b + c)/2
Problem Loading...
Note Loading...
Set Loading...
Taking the product of the equations we get
x 2 y 2 z 2 = 1 0 a + b + c .
Hence taking logs of both sides,
lo g ( x 2 y 2 z 2 ) = a + b + c
or 2 lo g ( x y z ) = a + b + c
or lo g x + lo g y + lo g z = 2 a + b + c