lo g 4 2 0 0 0 6 2 + lo g 5 2 0 0 0 6 3
The number above can be written as n m where m and n are relatively prime positive integers. Find m + n .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
First, lo g 4 2 0 0 0 6 2 + lo g 5 2 0 0 0 6 3 = 6 lo g 4 2 0 0 0 2 + 6 lo g 5 2 0 0 0 3 = 3 lo g 4 2 0 0 0 1 + 2 lo g 5 2 0 0 0 1
After some things, we get 3 ( 2 + 3 lo g 4 5 ) 1 + 2 ( 3 + 2 lo g 5 4 ) 1
Let lo g 5 4 be x
3 ( 2 + x 3 ) 1 + 2 ( 3 + 2 x ) 1 = 6 ( 3 + 2 x ) ( 2 + x 3 ) 3 ( 2 + x 3 ) + 2 ( 3 + 2 x ) = 6 ( 6 + x 9 + 6 + 4 x ) 6 + x 9 + 6 + 4 x = 6 1
so the answer is 7
Problem Loading...
Note Loading...
Set Loading...
We know that lo g a b 1 = lo g b a
lo g 4 2 0 0 0 6 2 + lo g 5 2 0 0 0 6 3 = 2 ⋅ lo g 4 2 0 0 0 6 1 + 3 ⋅ lo g 5 2 0 0 0 6 1 = 2 lo g 2 0 0 0 6 4 + 3 lo g 2 0 0 0 6 5 = lo g 2 0 0 0 6 4 2 + lo g 2 0 0 0 6 5 3 = lo g 2 0 0 0 6 4 2 ⋅ 5 3 = lo g 2 0 0 0 6 2 0 0 0 = 6 1 .
Therefore our answer is 1 + 6 = 7 .