Lost Logarithm

Algebra Level 4

What is 4 log 5 4 4 5 log 5 4 5 ? \dfrac {4^{\log_{\frac{5}{4}}{4}}}{5^{\log_{\frac{5}{4}}{5}}}?


The answer is 0.05.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Danish Ahmed
Jan 8, 2015

Let x = log 5 / 4 4 x = \log_{5/4}{4} and y = log 5 / 4 5 y = \log_{5/4}{5} .

Then y = log 5 / 4 ( 5 4 . 4 ) = log 5 / 4 5 4 + log 5 / 4 4 = 1 + log 5 / 4 4 = 1 + x y = \log_{5/4}({\dfrac{5}{4}.4}) = \log_{5/4}{\dfrac{5}{4}} + \log_{5/4}{4} = 1 + \log_{5/4}{4} = 1 + x

\therefore The expression = 4 x 5 y = 4 x 5 1 + x = ( 5 4 ) x . 1 5 = ( 5 4 ) log 5 / 4 4 . 1 5 = ( 5 4 ) log 5 / 4 1 4 . 1 5 = 1 4 . 1 5 = 1 20 \dfrac{4^x}{5^y} = \dfrac{4^x}{5^{1+x}} = (\dfrac{5}{4})^{-x}.\dfrac{1}{5} = (\dfrac{5}{4})^{-\log_{5/4}{4}}.\dfrac{1}{5} = (\dfrac{5}{4})^{\log_{5/4}{\dfrac{1}{4}}}.\dfrac{1}{5} = \dfrac{1}{4}.\dfrac{1}{5}= \dfrac{1}{20}

Note that a log a x = x \large{a^{\log_{a}{x}} = x} . So the expression = 0.05 = 0.05

Shak R
Jan 8, 2015

Let Q Q define the given the expression (where x = 4 x=4 and y = 5 y=5 ).

Q = x log y x ( x ) y log y x ( y ) = x l n ( x ) l n ( y x ) y l n ( y ) l n ( y x ) Q=\frac { { x }^{ \log _{ \frac { y }{ x } }{ (x )} } }{ { y }^{ \log _{ \frac { y }{ x } }{ (y)} } }= \frac { { x }^{ \frac { ln{ (x) } }{ ln{( \frac { y }{ x} }) } } }{ { y }^{ \frac { ln{ (y) } }{ ln{( \frac { y }{ x } ) } } } }

Apply the natural logarithm: l n ( Q ) = l n ( x l n ( x ) l n ( y x ) ) l n ( y l n ( y ) l n ( y x ) ) = l n ( x ) l n ( y x ) l n ( x ) l n ( y ) ln ( y x ) ln ( y ) ln{ (Q })=ln{ ({ x }^{ \frac { ln({ x) } }{ ln{ (\frac { y }{ x } ) } } }) }-ln{ ({ y }^{ \frac { ln{ (y) } }{ ln{ (\frac { y }{ x }) } } }) }=\frac { ln{ (x) } }{ ln{ (\frac { y }{ x } ) } } ln{ (x) } -\frac { ln(y) }{ \ln { (\frac { y }{ x } ) } } \ln { (y) }

Simplify the equation: ln ( Q ) = l n ( x ) 2 l n ( y ) 2 l n ( y x ) = ln ( x y ) ln ( x y ) ln ( y x ) = ln ( x y ) \ln{(Q)} = \frac { { ln(x) }^{ 2 }-{ ln(y) }^{ 2 } }{ ln({ \frac { y }{ x } ) } } =\frac { \ln { (xy)\cdot \ln { (\frac { x }{ y } ) } } }{ \ln { (\frac { y }{ x } ) } } =-\ln {( xy) }

ln ( Q ) = ln ( x y ) Q = 1 x y \ln { (Q) =-\ln { (xy) \Longrightarrow Q= \frac { 1 }{ xy } } }

Substitute x = 4 x=4 and y = 5 y=5 : Q = 1 4 5 = 1 20 {Q=\frac { 1 }{ 4\cdot 5 }=\frac { 1 }{ 20 } }

Hey, Shark I really loved the solution u have given. :-)

Bhargav Upadhyay - 6 years, 5 months ago

Log in to reply

Thank-you :)

Shak R - 6 years, 5 months ago

Very nice solution. I think you should change the expression ln ( x ) 2 ln ( y ) 2 \ln (x)^2 - \ln (y)^2 to ( ln x ) 2 ( ln y ) 2 (\ln x)^2 - (\ln y)^2 .

MD Omur Faruque - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...