Lots Of 7 & Lots Of Luck

Algebra Level 1

Which of the following is equal to 7 7 7 ( 7 × 7 ) 7 ? \large \dfrac{7^{7^{7}}}{(7 \times 7)^{7}} ?

111 2 \frac{111}{2} 7 7 7 7^{7}-7 7 42 7^{42} 7 70 7^{70} 7 7 7 14 7^{7^{7}-14}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Margaret Zheng
Mar 2, 2016

By rules of exponents , a m ÷ a n = a m n a^{m} \div a^{n} = a^{m-n} and a m × a n = a m + n a^{m} \times a^{n} = a^{m+n} .

The expression in the denominator simplifies to ( 7 × 7 ) 7 = 7 7 × 7 7 = 7 7 + 7 = 7 14 \large (7\times 7)^7 = 7^7 \times 7^7 = 7^{7 + 7} = 7^{14} .

Whereas the expression the numerator is already simplified.

Now let's simplify the expression in question!

7 7 7 ( 7 × 7 ) 7 = 7 7 7 7 14 = 7 7 7 ÷ 7 14 = 7 7 7 14 . { \begin{aligned} \dfrac{7^{7^7} }{ (7\times7)^7} &=& \dfrac{7^{7^7} }{ 7^{14}} \\ &=& 7^{7^7} \div 7^{14} \\ &=& \large\boxed{ 7^{7^7 -14}} . \\ \end{aligned} }


Footnote : But why can't we simplify 7 7 7 7^{7^7} to ( 7 7 ) 7 = 7 7 × 7 = 7 49 (7^7)^7 = 7^{7\times7} = 7^{49} ? Unfortunately, this is not true because a b c = a b × c \large a^{b^c} = a^{b\times c} is not an algebraic identity. You may read further in the following wiki: how are exponent towers evaluated? is a b c a^{b^c} equal to a b × c a^{b \times c} ? .

Nice solution!

Sandeep Bhardwaj - 5 years, 3 months ago

I just did 7^7/7x7 cause I got lazy :P

Jase Jason - 5 years, 3 months ago

Nice foot note

Arun Garg - 5 years, 2 months ago

7 7 7 ( 7 7 ) 7 = 7 7 7 7 7 7 7 Use : a m a n = a m + n = 7 7 7 7 14 Use : a m a n = a m n = 7 7 7 14 or 7 823529 \begin{aligned} \frac{ 7^{7^{7} } }{(7\cdot7)^7} &= \frac{ 7^{7^{7}} }{7^7 \cdot 7^7} \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad{\text{Use} : a^m \cdot a^n = a^{m+n} }\\&=\frac{7^{7^{7}}}{7^{14}} \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad{\text{Use}: \frac{a^m}{a^n} = a^{m-n}} \\&= 7^{7^{7}-14} \space \text{or} 7^{823529} \space\space\space \square \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...