Lots of logarithms

Algebra Level pending

A sequence a n {a_n} is defined as follows:

a 1 = 3 , a k + 1 = 4 a k + 3 a_1=3, a_{k+1}=4a_k+3

If k = 1 1000 1 log 2 ( a k + 1 ) log 2 ( a k + 1 + 1 ) \sum_{k=1} ^{1000} \frac{1}{\log_2(a_k+1)\log_2(a_{k+1}+1)} can be expressed as m n \frac{m}{n} for positive integers m m and n n , find m + n m+n .


The answer is 1251.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 29, 2015

a k + 1 = 4 a k + 3 a k + 1 + 1 = 4 a k + 4 a k + 1 + 1 = 4 ( a k + 1 ) a 1 + 1 = 4 log 2 ( a 1 + 1 ) = 2 a 2 + 1 = 4 2 log 2 ( a 2 + 1 ) = 4 a 3 + 1 = 4 3 log 2 ( a 3 + 1 ) = 6 . . . . . . a k + 1 = 4 k log 2 ( a k + 1 ) = 2 k \begin{aligned} a_{k+1} & = 4a_k+3 \\ a_{k+1} + 1 & = 4a_k+4 \\ \Rightarrow a_{k+1} + 1 & = 4(a_k+1) \\ \Rightarrow a_1 + 1 & = 4 & \Rightarrow \log_2{(a_1 + 1)} = 2 \\ a_2 + 1 & = 4^2 & \Rightarrow \log_2{(a_2 + 1)} = 4 \\ a_3 + 1 & = 4^3 & \Rightarrow \log_2{(a_3 + 1)} = 6 \\ ... & & ... \\ \Rightarrow a_k + 1 & = 4^k & \Rightarrow \log_2{(a_k + 1)} = 2k \end{aligned}

k = 1 1000 1 log 2 ( a k + 1 ) log 2 ( a k + 1 + 1 ) = k = 1 1000 1 4 k ( k + 1 ) = 1 4 k = 1 1000 ( 1 k 1 k + 1 ) = 1 4 ( k = 1 1000 1 k k = 2 1001 1 k ) = 1 4 ( 1 1 1 1001 ) = 1 4 ( 1000 1001 ) = 250 1001 \begin{aligned} \sum_{k=1}^{1000} {\frac{1}{\log_2{(a_k + 1)}\log_2{(a_{k+1} + 1)}}} & = \sum_{k=1}^{1000} {\frac{1}{4k(k+1)}} \\ & = \frac{1}{4} \sum_{k=1}^{1000} {\left(\frac{1}{k} - \frac{1}{k+1}\right)} \\ & = \frac{1}{4} \left( \sum_{k=1}^{1000} {\frac{1}{k}} - \sum_{k=2}^{1001} {\frac{1}{k}} \right) \\ & = \frac{1}{4} \left( \frac{1}{1} - \frac{1}{1001} \right) \\ & = \frac{1}{4} \left( \frac{1000}{1001} \right) \\ & = \frac {250}{1001} \end{aligned}

m + n = 1251 \Rightarrow m + n = \boxed{1251}

Moderator note:

Good observation to solving the linear recurrence relation, without having to know what the general solution is.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...