Lots of ratio

Geometry Level pending

A B C D ABCD is a rectangle and the lines ending at E , F E , F and G G are all parallel to A B AB , as shown. If A D = 12 AD = 12 , what is A G AG ?

3 3 10 \sqrt{10} 8 \sqrt 8 4 4 2.5 2.5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let S T : T R = 1 : n ST : TR = 1 : n

Then P U U T \Large\frac{PU}{UT} = a r ( P U Q ) a r ( Q U T ) = \Large\frac{ar(\triangle PUQ)}{ar(\triangle QUT)}

And P U U T \Large\frac{PU}{UT} = a r ( P U S ) a r ( S U T ) = \Large\frac{ar(\triangle PUS)}{ar(\triangle SUT)}

Using the above two equation we get

P U U T \Large\frac{PU}{UT} = a r ( P Q S ) a r ( S Q T ) = \Large\frac{ar(\triangle PQS)}{ar(\triangle SQT)} = 1 2 a r ( P Q R S ) 1 n + 1 a r ( S Q R ) = \Large\frac{\frac{1}{2}ar(PQRS)}{\frac{1}{n+1}ar(\triangle SQR)} = 1 2 a r ( P Q R S ) 1 n + 1 1 2 a r ( P Q R S ) = \Large\frac{\frac{1}{2}ar(PQRS)}{\frac{1}{n+1}\frac{1}{2}ar(PQRS)} = n + 1 = n+1

With reference to the diagram of Chew-Seong Cheong's solution

Let A B = a AB = a and it is given A D = 12 AD = 12 . Then clearly E E = a 2 EE' = \Large\frac{a}{2} and A E = 6 AE = 6

Now applying the concept shown above we will get

A F F E \Large\frac{AF'}{F'E'} = 1 + 1 = 2 = 1 + 1 = 2

So, A F F E \Large\frac{AF}{FE} = A F F E = \Large\frac{AF'}{F'E'} = 2 = 2

A F = 4 \Rightarrow AF = 4

Applying that concept again

A G G F \Large\frac{AG'}{G'F'} = 2 + 1 = 3 = 2+ 1 = 3

So, A G G F \Large\frac{AG}{GF} = A G G F = \Large\frac{AG'}{G'F'} = 3 = 3

A G = 3 \Rightarrow AG = 3

Chew-Seong Cheong
May 16, 2020

Let D D be the origin ( 0 , 0 ) (0,0) of an x y xy -plane. The length of A B = C D = a AB=CD=a . Let the other ends of the three short parallel lines be E ( x 1 a , y 1 ) E'(x_1a,y_1) , F ( x 2 a , y 2 ) F'(x_2a,y_2) , and G ( x 3 a , y 3 ) G'(x_3a,y_3) . Let us find the recursive relation of { x n , y n } \{x_n, y_n\} . First consider a general case of ( x 2 , y 2 ) (x_2,y_2) .

Let E E E'E'' and F F F'F'' be perpendicular to C D CD and E E EE' respectively. Due to similar triangles we have:

{ E F F F = E B B B x 2 y 2 y 1 = 1 12 y 1 . . . ( 1 ) F E F F = C D A B x 1 x 2 y 2 y 1 = 1 12 . . . ( 2 ) \begin{cases} \dfrac {EF''}{F'F''} = \dfrac {EB'}{BB'} & \implies \dfrac {x_2}{y_2-y_1} = \dfrac 1{12-y_1} & ...(1) \\ \dfrac {F''E'}{F'F''} = \dfrac {CD}{AB} & \implies \dfrac {x_1-x_2}{y_2-y_1} = \dfrac 1{12} & ...(2) \end{cases}

( 1 ) ( 2 ) : x 2 x 1 x 2 = 12 12 y 1 x 2 = 12 x 1 24 y 1 x n = 12 x n 1 24 y n 1 \begin{aligned} \dfrac {(1)}{(2)}: \quad \frac {x_2}{x_1-x_2} & = \frac {12}{12-y_1} \implies x_2 & = \frac {12x_1}{24-y_1} & \implies x_n = \frac {12x_{n-1}}{24-y_{n-1}} \end{aligned}

( 2 ) : y 2 = 12 ( x 1 x 2 ) + y 1 y n = 12 ( x n 1 x n ) + y n 1 \begin{aligned} (2): \implies y_2 & = 12(x_1 - x_2) + y_1 & \implies y_n = 12(x_{n-1}-x_n) + y_{n-1} \end{aligned}

We can easily find that x 1 = 1 2 x_1 = \dfrac 12 and y 1 = 6 y_1 = 6 , then

x 2 = 12 × 1 2 24 6 = 1 3 y 2 = 12 ( 1 2 1 3 ) + 6 = 8 x 3 = 12 × 1 3 24 8 = 1 4 y 3 = 12 ( 1 3 1 4 ) + 8 = 9 \begin{array} {ll} x_2 = \dfrac {12 \times \frac 12}{24 - 6} = \dfrac 13 & \implies y_2 = 12\left(\dfrac 12 - \dfrac 13\right) + 6 = 8 \\ x_3 = \dfrac {12 \times \frac 13}{24 - 8} = \dfrac 14 & \implies y_3 = 12\left(\dfrac 13 - \dfrac 14\right) + 8 = 9 \end{array}

We note that A G = A D G D = 12 y 3 = 3 AG = AD-GD = 12 - y_3 = \boxed 3 .

Let the position coordinates of A , B , C , D A, B, C, D be ( 0 , 12 ) , ( a , 12 ) , ( a , 0 ) , ( 0 , 0 ) (0,12),(a, 12),(a, 0),(0,0) respectively. Then those of E E are ( 0 , 6 ) (0,6) and the equation of A C \overline {AC} is

y = 12 a x + 12 y=-\dfrac{12}{a}x+12 .

Equation of B E \overline {BE} is

y = 6 a x + 6 y=\dfrac{6}{a}x+6 .

Solving, the y y -coordinate of F F is 8 8 , and the equation of B F \overline {BF} is

y = 4 a x + 8 y=\dfrac{4}{a}x+8 .

So, the y y -coordinate of G G is 9 9 and A G = 12 9 = 3 |\overline {AG}|=12-9=\boxed 3 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...