Love Algebra (Simple "FUN" Problem)

Level 2

Let a 1 , a 2 , a 3 . . . . . a 11 a_{1},a_{2},a_{3}.....a_{11} be real numbers

satisfying a 1 = 15 , 27 2 a 2 > 0 a_{1}=15, 27-2a_{2}>0 and

a k = 2 a k 1 a k 2 a_{k}=2a_{k-1}-a_{k-2} for k = 3 , 4 , 5.....11. k=3,4,5.....11.

If a 1 2 + a 2 2 + a 3 2 . . . . . + a 11 2 11 = 90 \frac{a^{2}_{1}+a^{2}_{2}+a^{2}_3.....+a^{2}_{11}}{11}=90

then the value of

a 1 + a 2 + a 3 . . . . a 11 11 \frac{a_{1}+a_{2}+a_{3}....a_{11}}{11} is equal to


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rajdeep Brahma
Apr 15, 2017

We can write the recursion as follows:ak-a(k-1)=a(k-1)-a(k-2)=d
Hence this is an AP.
a1=15,a2=15+d,...,a11=15+10d
15^2+(15+d)^2+...+(15+10d)^2=990
(15^2X15)+2X15XdX(1+2+...+10)+(1^2+2^2+...+10^2)=990
Further simplifying we get,
7d^2+30d+27=0
d=(-3)or(- 9 7 \frac{9}{7} )
Since 13.5>a2,so d=(-3)
15 + ( 15 + d ) + . . . + ( 15 + 10 d ) 11 \frac{15+(15+d)+...+(15+10d)}{11} =15+5d=15-15=0(ANSWER)


0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...