a 1 , a 2 , a 3 . . . . . a 1 1 be real numbers
Letsatisfying a 1 = 1 5 , 2 7 − 2 a 2 > 0 and
a k = 2 a k − 1 − a k − 2 for k = 3 , 4 , 5 . . . . . 1 1 .
If 1 1 a 1 2 + a 2 2 + a 3 2 . . . . . + a 1 1 2 = 9 0
then the value of
1 1 a 1 + a 2 + a 3 . . . . a 1 1 is equal to
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
We can write the recursion as follows:ak-a(k-1)=a(k-1)-a(k-2)=d
Hence this is an AP.
a1=15,a2=15+d,...,a11=15+10d
15^2+(15+d)^2+...+(15+10d)^2=990
(15^2X15)+2X15XdX(1+2+...+10)+(1^2+2^2+...+10^2)=990
Further simplifying we get,
7d^2+30d+27=0
d=(-3)or(- 7 9 )
Since 13.5>a2,so d=(-3)
1 1 1 5 + ( 1 5 + d ) + . . . + ( 1 5 + 1 0 d ) =15+5d=15-15=0(ANSWER)