A calculus problem by Jose Sacramento

Calculus Level 4

π π ln ( 1 + sin 2 x ) ln ( 1 + sin 2 x ) + ln ( 1 + cos 2 x ) d x \large \int_{-\pi}^\pi \dfrac{\ln(1 + \sin^2 x)} {\ln(1 + \sin^2 x) + \ln(1 + \cos^2 x)} \, dx

Find the value of the closed form (to 3 decimal places) of the integral above.


The answer is 3.141.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Kushal Bose
Dec 13, 2016

π π ln ( 1 + sin 2 x ) ln ( 1 + sin 2 x ) + ln ( 1 + cos 2 x ) d x \large \int_{-\pi}^\pi \dfrac{\ln(1 + \sin^2 x)} {\ln(1 + \sin^2 x) + \ln(1 + \cos^2 x)} \, dx . As the function is even we can write the following :

2 0 π ln ( 1 + sin 2 x ) ln ( 1 + sin 2 x ) + ln ( 1 + cos 2 x ) d x \large 2 \int_{0}^\pi \dfrac{\ln(1 + \sin^2 x)} {\ln(1 + \sin^2 x) + \ln(1 + \cos^2 x)} \, dx

= 2 0 π / 2 ln ( 1 + sin 2 x ) ln ( 1 + sin 2 x ) + ln ( 1 + cos 2 x ) d x + 2 π / 2 π ln ( 1 + sin 2 x ) ln ( 1 + sin 2 x ) + ln ( 1 + cos 2 x ) d x =\large 2 \int_{0}^{\pi/2} \dfrac{\ln(1 + \sin^2 x)} {\ln(1 + \sin^2 x) + \ln(1 + \cos^2 x)} \, dx + \large 2 \int_{\pi/2}^\pi \dfrac{\ln(1 + \sin^2 x)} {\ln(1 + \sin^2 x) + \ln(1 + \cos^2 x)} \, dx

Let I 1 = 0 π / 2 ln ( 1 + sin 2 x ) ln ( 1 + sin 2 x ) + ln ( 1 + cos 2 x ) d x I_1=\large \int_{0}^{\pi/2} \dfrac{\ln(1 + \sin^2 x)} {\ln(1 + \sin^2 x) + \ln(1 + \cos^2 x)} \, dx

Applying the rule : a b f ( x ) d x = a b f ( a + b x ) d x \int_{a}^{b} f(x) dx=\int_{a}^{b} f(a+b-x) dx and adding we get I 1 = π 4 I_1=\frac{\pi}{4}

For second part I 2 = π / 2 π ln ( 1 + sin 2 x ) ln ( 1 + sin 2 x ) + ln ( 1 + cos 2 x ) d x I_2=\large \int_{\pi/2}^{\pi} \dfrac{\ln(1 + \sin^2 x)} {\ln(1 + \sin^2 x) + \ln(1 + \cos^2 x)} \, dx

Put x = z + π / 2 x=z+\pi/2 . Then the integral becomes like I 1 I_1 .So, I 2 = π 4 I_2=\frac{\pi}{4}

So, total value of integral is ( 2 × π / 4 ) + ( 2 × π / 4 ) = π / 2 + π / 2 = π = 3.14 (2\times \pi/4) + (2 \times \pi/4)=\pi/2 +\pi/2=\pi=\boxed{3.14}

Chew-Seong Cheong
Dec 13, 2016

Similar solution as @Kushal Bose 's presented as follows.

I = π π ln ( 1 + sin 2 x ) ln ( 1 + sin 2 x ) + ln ( 1 + cos 2 x ) d x As the integrand is even. = 2 0 π ln ( 1 + sin 2 x ) ln ( 1 + sin 2 x ) + ln ( 1 + cos 2 x ) d x The integrand is symmetrical about x = π 2 . = 4 0 π 2 ln ( 1 + sin 2 x ) ln ( 1 + sin 2 x ) + ln ( 1 + cos 2 x ) d x Using a b f ( x ) d x = a b f ( a + b x ) d x = 2 0 π 2 ( ln ( 1 + sin 2 x ) ln ( 1 + sin 2 x ) + ln ( 1 + cos 2 x ) + ln ( 1 + cos 2 x ) ln ( 1 + cos 2 x ) + ln ( 1 + sin 2 x ) ) d x = 2 0 π 2 d x = π 3.142 \begin{aligned} I & = \int_{-\pi}^\pi \frac {\ln(1+\sin^2 x)}{\ln(1+\sin^2 x) + \ln(1+\cos^2 x)} dx \quad \quad \small \color{#3D99F6} \text{As the integrand is even.} \\ & = 2 \int_0^\pi \frac {\ln(1+\sin^2 x)}{\ln(1+\sin^2 x) + \ln(1+\cos^2 x)} dx \quad \quad \small \color{#3D99F6} \text{The integrand is symmetrical about }x = \frac \pi 2 .* \\ & = 4 \int_0^\frac \pi 2 \frac {\ln(1+\sin^2 x)}{\ln(1+\sin^2 x) + \ln(1+\cos^2 x)} dx \quad \quad \small \color{#3D99F6} \text{Using } \int_a^b f(x) \ dx = \int_a^b f(a+b - x) \ dx \\ & = 2 \int_0^\frac \pi 2 \left( \frac {\ln(1+\sin^2 x)}{\ln(1+\sin^2 x) + \ln(1+\cos^2 x)} + \frac {\ln(1+\cos^2 x)}{\ln(1+\cos^2 x) + \ln(1+\sin^2 x)} \right) dx \\ & = 2 \int_0^\frac \pi 2 dx \\ & = \pi \approx \boxed{3.142} \end{aligned}


* Note that sin 2 x = sin 2 ( π x ) \sin^2 x = \sin^2 (\pi - x) and cos 2 x = cos 2 ( π x ) \cos^2 x = \cos^2 (\pi - x) , therefore, the integrand is symmetrical about x = π 2 x = \frac \pi 2 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...