∫ − π π ln ( 1 + sin 2 x ) + ln ( 1 + cos 2 x ) ln ( 1 + sin 2 x ) d x
Find the value of the closed form (to 3 decimal places) of the integral above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Similar solution as @Kushal Bose 's presented as follows.
I = ∫ − π π ln ( 1 + sin 2 x ) + ln ( 1 + cos 2 x ) ln ( 1 + sin 2 x ) d x As the integrand is even. = 2 ∫ 0 π ln ( 1 + sin 2 x ) + ln ( 1 + cos 2 x ) ln ( 1 + sin 2 x ) d x The integrand is symmetrical about x = 2 π . ∗ = 4 ∫ 0 2 π ln ( 1 + sin 2 x ) + ln ( 1 + cos 2 x ) ln ( 1 + sin 2 x ) d x Using ∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x = 2 ∫ 0 2 π ( ln ( 1 + sin 2 x ) + ln ( 1 + cos 2 x ) ln ( 1 + sin 2 x ) + ln ( 1 + cos 2 x ) + ln ( 1 + sin 2 x ) ln ( 1 + cos 2 x ) ) d x = 2 ∫ 0 2 π d x = π ≈ 3 . 1 4 2
∗ Note that sin 2 x = sin 2 ( π − x ) and cos 2 x = cos 2 ( π − x ) , therefore, the integrand is symmetrical about x = 2 π .
Problem Loading...
Note Loading...
Set Loading...
∫ − π π ln ( 1 + sin 2 x ) + ln ( 1 + cos 2 x ) ln ( 1 + sin 2 x ) d x . As the function is even we can write the following :
2 ∫ 0 π ln ( 1 + sin 2 x ) + ln ( 1 + cos 2 x ) ln ( 1 + sin 2 x ) d x
= 2 ∫ 0 π / 2 ln ( 1 + sin 2 x ) + ln ( 1 + cos 2 x ) ln ( 1 + sin 2 x ) d x + 2 ∫ π / 2 π ln ( 1 + sin 2 x ) + ln ( 1 + cos 2 x ) ln ( 1 + sin 2 x ) d x
Let I 1 = ∫ 0 π / 2 ln ( 1 + sin 2 x ) + ln ( 1 + cos 2 x ) ln ( 1 + sin 2 x ) d x
Applying the rule : ∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x and adding we get I 1 = 4 π
For second part I 2 = ∫ π / 2 π ln ( 1 + sin 2 x ) + ln ( 1 + cos 2 x ) ln ( 1 + sin 2 x ) d x
Put x = z + π / 2 . Then the integral becomes like I 1 .So, I 2 = 4 π
So, total value of integral is ( 2 × π / 4 ) + ( 2 × π / 4 ) = π / 2 + π / 2 = π = 3 . 1 4