Lovely Logarithm!

Algebra Level 5

n = 0 7 log 3 ( x n ) = 308 56 log 3 ( n = 0 7 x n ) 57 \begin{aligned} &\displaystyle\sum_{n=0}^{7}\log_{3}(x_{n}) &= 308 \\ 56 \leq & \log_{3}\left ( \sum_{n=0}^{7}x_{n}\right )& \leq 57 \\ \end{aligned}

The increasing geometric sequence x 0 , x 1 , x 2 , x_{0},x_{1},x_{2},\ldots consists entirely of integral powers of 3. If they satisfy the two conditions above, find log 3 ( x 14 ) . \log_{3}(x_{14}).


The answer is 91.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 19, 2015

Let a 0 = 3 a a_0 = 3^a and a n = 3 a 3 n r = 3 a + n r a_n = 3^a3^{nr} = 3^{a+nr} , where a a and r r are integers.

n = 0 7 log 3 ( x n ) = n = 0 7 log 3 ( 3 a + n r ) = n = 0 7 ( a + n r ) = 8 a + 28 r = 308 2 a + 7 r = 77 . . . ( 1 ) n = 0 7 x n = n = 0 7 3 a + n r = 3 a ˙ 3 8 r 1 3 r 1 3 a + 7 r 56 log 3 ( n = 0 7 x n ) 57 56 log 3 ( 3 a + 7 r ) 57 56 a + 7 r 57 . . . ( 2 ) \begin{aligned} \Rightarrow \displaystyle \sum_{n=0}^7 {\log_3{\left(x_n\right)}} & = \sum_{n=0}^7 {\log_3{\left(3^{a+nr}\right)}} = \sum_{n=0}^7 {\left( a+nr\right)} \\ & = 8a + 28r = 308 \\ \\ \Rightarrow 2a + 7r & = 77 \quad ...(1) \\ \\ \Rightarrow \sum_{n=0}^7 {x_n} & = \sum_{n=0}^7 {3^{a+nr}} = 3^a\dot{} \frac {3^{8r}-1} {3^r-1} \approx 3^{a+7r} \\ \Rightarrow 56 & \le \log_3 {\left(\sum_{n=0}^7 {x_n}\right)} \le 57 \\ 56 & \le \log_3 {\left(3^{a+7r}\right)} \le 57 \\ \\ \Rightarrow 56 & \le a+7r \le 57 \quad ...(2) \end{aligned}

From Eq.1 - Eq.2:

20 a 21 { a = 20 40 + 7 r = 77 r = 37 7 rejected a = 21 42 + 7 r = 77 r = 5 20 \le a \le 21 \quad \Rightarrow \begin{cases} a = 20 & \Rightarrow 40+7r = 77 & \Rightarrow r = \frac{37}{7} \text{ rejected}\\ a = 21 & \Rightarrow 42+7r = 77 & \Rightarrow r = 5 \end{cases}

log 3 x 14 = log 3 3 a + 14 r = a + 14 r = 21 + 14 × 5 = 91 \Rightarrow \log_3 {x_{14}} = \log_3 {3^{a+14r}} = a + 14r = 21+14\times 5 = \boxed{91}

Tom Van Lier
Aug 4, 2015

Because of the second condition and given that the series is increasing geometric and consisting of integral powers of 3, it is quite trivial that x 7 = 3 56 x_{7} = 3^{56} .

If the factor of the series can be written as 3 q 3^{q} , with q N q \in \mathbb{N} , we can see that x 6 = 3 56 q x_{6} = 3^{56 -q} and x 5 = 3 56 2 q x_{5} = 3^{56 - 2q} and so on ...

Then because of the first condition we get the following equation in q :

56 + 56 q + 56 2 q + 56 3 q + 56 4 q + 56 5 q + 56 6 q + 56 7 q = 308 56 + 56- q + 56 -2q + 56 -3q + 56 -4q + 56- 5q + 56 -6q + 56 - 7q = 308

or 8.56 28 q = 308 8. 56 -28q = 308

or q = 5 q = 5 .

Therefor the geometric series starts at x 0 = 3 56 7 q = 3 21 x_{0} = 3^{56 - 7q} = 3^{21}

and x 14 = 3 21 . 3 14. q = 3 21 . 3 70 = 3 91 x_{14} = 3^{21} . 3^{14.q} = 3^{21} . 3^{70} = 3^{91} , so that the answer is 91.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...