For each natural number less than , there exist four positive integers , such that
Find the maximum value of .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
0 = 2 2 − 2 1 2 2 − 2 2 , 1 = 2 2 − 2 1 2 2 − 2 1 , 2 = 2 2 − 2 1 2 3 − 2 2 , 3 = 2 2 − 2 1 2 3 − 2 1
4 = 2 2 − 2 1 2 4 − 2 3 , 5 = 2 3 − 2 1 2 5 − 2 1 , 6 = 2 2 − 2 1 2 4 − 2 2 , 7 = 2 2 − 2 1 2 4 − 2 1
8 = 2 2 − 2 1 2 5 − 2 4 , 9 = 2 4 − 2 1 2 7 − 2 1 , 1 0 = 2 3 − 2 1 2 6 − 2 2
Suppose 1 1 is still possible.
1 1 = 2 c − 2 d 2 a − 2 b ⟺ 1 1 ( 2 c − 2 d ) = 2 a − 2 b
Suppose a > b , c > d . Then
1 1 ∗ 2 d ( 2 c − d − 1 ) = 2 b ( 2 a − b − 1 )
From the equation above we get: 2 d ∣ 2 b and 2 b ∣ 2 d , so b = d . Furthermore
1 1 ( 2 x − 1 ) = 2 y − 1
where x , y are positive integers. Since x , y ≥ 2 , 4 ∣ 2 x and 4 ∣ 2 y . From that
1 1 ( 2 x − 1 ) ≡ 1 m o d 4
2 y − 1 ≡ 3 m o d 4
This is a contradiction.
So the answer is 1 1 .