Lower The 6th Degree

Calculus Level 3

d n d x n ln ( x ) x = a n ln ( x ) b n x n + 1 \large \frac{d^n}{dx^n} \frac{\ln(x)}{x} = \frac{a_n\ln(x)-b_n}{x^{n+1}}

Let f ( n ) ( x ) f^{(n)}(x) be defined as the n n -th derivative of ln ( x ) x \frac{\ln(x)}{x} .

If f ( n ) ( x ) f^{(n)}(x) can be written in the form shown above, then the solution to f ( n ) ( x ) = 0 f^{(n)}(x)=0 can be written in the form x = e p n q n x=e^{\frac{p_n}{q_n}} where p n p_n and q n q_n are coprime positive integers.

What is p 10 + q 10 p_{10}+q_{10} ?


The answer is 9901.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Kartik Sharma
Oct 5, 2015

This is my 200th solution.

We shall use General Leibnitz Rule which states that

d n d x n ( f g ) = k = 0 n ( n k ) f ( k ) g ( n k ) \displaystyle \frac{d^n}{dx^n}\left(f g\right) = \sum_{k=0}^{n}{\binom{n}{k} f^{(k)} g^{(n-k)}}

For f = ln ( x ) , g = 1 x f = \ln(x), g = \frac{1}{x} , it becomes

d n d x n ( ln ( x ) x ) = k = 0 n ( n k ) ln ( x ) ( k ) ( 1 x ) ( n k ) \displaystyle \frac{d^n}{dx^n}\left(\frac{\ln(x)}{x}\right) = \sum_{k=0}^{n}{\binom{n}{k} {\ln(x)}^{(k)} {\left(\frac{1}{x}\right)}^{(n-k)}}

Now, we shall find ( 1 x ) ( m ) {\left(\frac{1}{x}\right)}^{(m)} for some integer m m .

Some simple computation shows that it equals ( 1 ) k k ! x k 1 (-1)^k k! x^{-k-1} [You may use induction but that's trivial, however]

Now, what's ( ln ( x ) ) ( m ) {\left(\ln(x)\right)}^{(m)} for some integer m m ? Well, ln ( x ) ( 1 ) = 1 x \ln(x)^{(1)} = \frac{1}{x} and then we know what's the nth derivative of 1 x \frac{1}{x} . Hence, we can easily say that ln ( x ) ( 0 ) = ln ( x ) , ln ( x ) ( m ) = ( 1 ) m 1 ( m 1 ) ! x m + 1 1 , m Z + \ln(x)^{(0)} = \ln(x), \ln(x)^{(m)} = (-1)^{m-1} (m-1)! x^{-m+1-1}, \forall m \in Z^+

Substituting our general derivatives,

d n d x n ( ln ( x ) x ) = ( 1 ) n ( n 0 ) n ! ln ( x ) x n 1 + k = 1 n ( n k ) ( 1 ) k 1 ( k 1 ) ! x k ( 1 ) n k ( n k ) ! x n + k 1 \displaystyle \frac{d^n}{dx^n}\left(\frac{\ln(x)}{x}\right) =(-1)^n \binom{n}{0} n! \ln(x) x^{-n-1} + \sum_{k=1}^{n}{\binom{n}{k} (-1)^{k-1} (k-1)! x^{-k} (-1)^{n-k} (n-k)! x^{-n+k-1}}

= ( 1 ) n n ! ln ( x ) x n + 1 + k = 1 n n ! k ( 1 ) n 1 x n + 1 \displaystyle = \frac{(-1)^n n! \ln(x)}{x^{n+1}} + \sum_{k=1}^{n}{\frac{n!}{k} \frac{(-1)^{n-1}}{x^{n+1}}}

= ( 1 ) n n ! ln ( x ) ( 1 ) n n ! H n x n + 1 \displaystyle = \frac{(-1)^n n! \ln(x) - (-1)^n n! H_n}{x^{n+1}} , H n H_n is the Harmonic number.

The solution for f ( n ) ( x ) = 0 f^{(n)}(x) = 0 hence becomes e H n e^{H_n} .

As a result, our final answer would be e H 10 e^{H_{10}} .

Garrett Clarke
Jul 28, 2015

Where H n H_n is the n n -th harmonic number,

a n = ( 1 ) n n ! a_n=(-1)^nn!

b n = H n ( 1 ) n n ! b_n=H_n(-1)^nn!

a n l n ( x ) b n x n + 1 = ( 1 ) n n ! x n + 1 ( l n ( x ) H n ) \frac{a_nln(x)-b_n}{x^{n+1}} = \frac{(-1)^nn!}{x^{n+1}}(ln(x)-H_n)

We can prove that f ( n ) ( x ) = ( 1 ) n n ! x n + 1 ( l n ( x ) H n ) f^{(n)}(x) = \frac{(-1)^nn!}{x^{n+1}}(ln(x)-H_n) using induction.

Base Case: f ( 0 ) ( x ) = ( 1 ) 0 ( 0 ) ! x 0 + 1 ( l n ( x ) H 0 ) = l n ( x ) x f^{(0)}(x)=\frac{(-1)^0(0)!}{x^{0+1}}(ln(x)-H_0) = \frac{ln(x)}{x}

f ( n + 1 ) ( x ) = d d x ( 1 ) n n ! x n + 1 ( l n ( x ) H n ) f^{(n+1)}(x) = \frac{d}{dx}\frac{(-1)^nn!}{x^{n+1}}(ln(x)-H_n)

f ( n + 1 ) ( x ) = ( 1 ) n n ! ( x n ( n + 1 ) x n ( l n ( x ) H n ) x 2 n + 2 ) f^{(n+1)}(x) = (-1)^nn!\left(\frac{x^n-(n+1)x^n(ln(x)-H_n)}{x^{2n+2}}\right)

f ( n + 1 ) ( x ) = ( 1 ) n + 1 ( n + 1 ) ! ( ( l n ( x ) H n ) 1 n + 1 x n + 2 ) f^{(n+1)}(x) = (-1)^{n+1}(n+1)!\left(\frac{(ln(x)-H_n)-\frac{1}{n+1}}{x^{n+2}}\right)

f ( n + 1 ) ( x ) = ( 1 ) n + 1 ( n + 1 ) ! x n + 2 ( l n ( x ) H n + 1 ) f^{(n+1)}(x) = \frac{(-1)^{n+1}(n+1)!}{x^{n+2}}\left(ln(x)-H_{n+1}\right)\ _\square

Solving the equation f ( n ) ( x ) = 0 f^{(n)}(x)=0 :

( 1 ) n n ! x n + 1 ( l n ( x ) H n ) = 0 \frac{(-1)^nn!}{x^{n+1}}(ln(x)-H_n)=0

l n ( x ) = H n x = e H n ln(x)=H_n\Longrightarrow x=e^{H_n}

Plugging in n = 10 n=10 gives x = e H 10 x=e^{H_{10}} , so p 10 p_{10} and q 10 q_{10} must be the numerator and denominator of H 10 H_{10} , respectively.

H 10 = k = 1 10 1 k = 1 + 1 2 + 1 3 + + 1 10 = 7381 2520 H_{10} = \displaystyle\sum_{k=1}^{10} \frac{1}{k} = 1+\frac{1}{2}+\frac{1}{3}+\dots+\frac{1}{10} = \frac{7381}{2520}

Therefore p 10 = 7381 p_{10}=7381 and q 10 = 2520 q_{10}=2520 , so our answer must be:

p 10 + q 10 = 7381 + 2520 = 9901 p_{10} + q_{10} = 7381 + 2520 = \boxed{9901}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...