Lowering the exponents

Algebra Level 3

{ x 2 + y 2 = 2 x 3 + y 3 = 2 \large{\begin{cases}x^2+y^2=2 \\ x^3+y^3 = -2 \end{cases}}

If x x and y y are number satisfying the system of equations above, find the value(s) of x + y x+y .

(A) : 2 -2
(B) : 1 + 3 1 +\sqrt3
(C) : 1 3 1 -\sqrt3

Only (A) All of (A), (B) and (C) Only (C) Only (B)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

From the first given equation

( x + y ) 2 = 2 + 2 x y x y = ( x + y ) 2 2 2 { (x+y) }^{ 2 }=2+2xy\\ xy=\frac { { (x+y) }^{ 2 }-2 }{ 2 } .

Factoring the second equation and replacing the first one

( x + y ) ( 2 x y ) = 2 ( x + y ) ( 2 ( x + y ) 2 2 2 ) = 2 ( x + y ) ( 6 ( x + y ) 2 ) = 4 6 ( x + y ) ( x + y ) 3 + 4 = 0 ( x + y + 2 ) ( ( x + y ) 2 2 ( x + y ) 2 ) = 0 (x+y)(2-xy)=-2\\ (x+y)\left( 2-\frac { { (x+y) }^{ 2 }-2 }{ 2 } \right) =-2\\ (x+y)(6-{ (x+y) }^{ 2 })=-4\\ 6(x+y)-{ (x+y })^{ 3 }+4=0\\ -(x+y+2)({ (x+y) }^{ 2 }-2(x+y)-2)=0

Therefore, x + y = 2 , 1 3 , 1 + 3 x+y=-2,\quad 1-\sqrt { 3 } ,\quad 1+\sqrt { 3 } .

I think there's a typo in the options.

But the options given are:

{ 2 1 3 3 1 \begin {cases} - 2 \\ - 1-\sqrt 3 \\ \sqrt 3-1\end {cases}

Therefore I answered - 2.

Chew-Seong Cheong - 5 years ago

Log in to reply

I think the author wrote incorrectly the other options... clearly, he wanted the answer to be "all the options".

Mateo Matijasevick - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...