Lucky 13

13 = 1 2 + 3 2 + 1 × 3 13 = 1^2 + 3^2 + 1 \times 3

How many 2 digit numbers satisfy the equation

a b = a 2 + b 2 + a × b ? \overline{ab} = a^2 + b^2 + a \times b?

3 1 4 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tom Engelsman
Mar 29, 2018

We require a ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ) , b ( 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ) a \in (1, 2, 3, 4, 5, 6, 7, 8, 9), b \in (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) when solving the quadratic equation in a : a:

10 a + b = a 2 + b 2 + a b a 2 + ( b 10 ) a + ( b 2 b ) = 0 10a + b = a^2 + b^2 + ab \Rightarrow a^2 + (b-10)a + (b^2 - b) = 0 (i)

which has roots: a = ( 10 b ) ± ( b 2 20 b + 100 ) 4 ( 1 ) ( b 2 b ) 2 = ( 10 b ) ± 100 16 b 3 b 2 2 a = \frac{(10-b) \pm \sqrt{(b^2 - 20b +100) - 4(1)(b^2 - b)}}{2} = \frac{(10-b) \pm \sqrt{100 - 16b - 3b^2}}{2} (ii).

In order for a N a \in \mathbb{N} , we require a non-negative discriminant 100 16 b 3 b 2 0 \Rightarrow 100 - 16b - 3b^2 \ge 0 , or:

b = 16 ± 256 4 ( 3 ) ( 100 ) 6 = 16 ± 4 91 6 = 8 2 91 3 9.02 b 3.69 b = \frac{16 \pm \sqrt{256 - 4(-3)(100)}}{-6} = \frac{16 \pm 4\sqrt{91}}{-6} = \frac{8 \mp 2\sqrt{91}}{3} \Rightarrow -9.02 \le b \le 3.69 ,

which limits us to just b = ( 0 , 1 , 2 , 3 ) . \boxed{b = (0, 1, 2, 3)}. Testing each of these values in (ii) produces the ordered-pairs:

( a , b ) = ( 0 , 0 ) ; ( 10 , 0 ) ; ( 0 , 1 ) ; ( 9 , 1 ) ; ( 4 + 14 , 2 ) ; ( 4 14 , 2 ) ; ( 1 , 3 ) ; ( 6 , 3 ) (a,b) = (0,0); (10,0); (0,1); (9,1); (4+\sqrt{14}, 2); (4-\sqrt{14},2); (1,3); (6,3)

of which only 3 \boxed{3} pairs work: 13 , 63 , 91 13, 63, 91 .

Giorgos K.
Feb 23, 2018

Mathematica

Select[Range[10, 99],(s=IntegerDigits@#;s[[1]]^2+s[[2]]^2+s[[1]]*s[[2]]==#)&]

{13, 63, 91}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...