This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We require a ∈ ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ) , b ∈ ( 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ) when solving the quadratic equation in a :
1 0 a + b = a 2 + b 2 + a b ⇒ a 2 + ( b − 1 0 ) a + ( b 2 − b ) = 0 (i)
which has roots: a = 2 ( 1 0 − b ) ± ( b 2 − 2 0 b + 1 0 0 ) − 4 ( 1 ) ( b 2 − b ) = 2 ( 1 0 − b ) ± 1 0 0 − 1 6 b − 3 b 2 (ii).
In order for a ∈ N , we require a non-negative discriminant ⇒ 1 0 0 − 1 6 b − 3 b 2 ≥ 0 , or:
b = − 6 1 6 ± 2 5 6 − 4 ( − 3 ) ( 1 0 0 ) = − 6 1 6 ± 4 9 1 = 3 8 ∓ 2 9 1 ⇒ − 9 . 0 2 ≤ b ≤ 3 . 6 9 ,
which limits us to just b = ( 0 , 1 , 2 , 3 ) . Testing each of these values in (ii) produces the ordered-pairs:
( a , b ) = ( 0 , 0 ) ; ( 1 0 , 0 ) ; ( 0 , 1 ) ; ( 9 , 1 ) ; ( 4 + 1 4 , 2 ) ; ( 4 − 1 4 , 2 ) ; ( 1 , 3 ) ; ( 6 , 3 )
of which only 3 pairs work: 1 3 , 6 3 , 9 1 .