Lucky Number 17!

Find the remainder when the number below is divided by 17.

1 1 ! + 2 2 ! + 3 3 ! + 4 4 ! + + 1 7 17 ! \large 1^{1!} + 2^{2!} + 3^{3!} + 4^{4!} + \cdots + 17^{17!}

Notation :
! ! denotes the factorial notation. For example, 10 ! = 1 × 2 × 3 × × 10 10! = 1\times2\times3\times\cdots\times10 .


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Note first that for n 6 n \ge 6 we have that 6 ! n ! 6! | n! , and that 6 ! = 16 × 45 6! = 16 \times 45 . Now as 17 17 is prime, for 6 n 16 6 \le n \le 16 we know that 17 17 does not divide n n nor any (integral) power of n n . Thus by Fermat's Little Theorem , for 6 n 16 6 \le n \le 16 we have that

n n ! = ( n n ( n 1 ) . . . 7 ) 6 ! = ( n n ( n 1 ) . . . 7 45 ) 16 1 ( m o d 17 ) n^{n!} = (n^{n*(n - 1)*...*7})^{6!} = (n^{n*(n-1)*...*7*45})^{16} \equiv 1 \pmod{17} .

Then as 17 1 7 17 ! 17 | 17^{17!} we see that n = 6 17 ( n n ! ( m o d 17 ) ) = n = 6 16 1 = 11 \displaystyle\sum_{n=6}^{17} (n^{n!} \pmod{17}) = \sum_{n=6}^{16} 1 = 11 .

So now we need to evaluate n n ! ( m o d 17 ) n^{n!} \pmod{17} for 1 n 5 1 \le n \le 5 :

  • 1 1 ! = 1 1 ( m o d 17 ) 1^{1!} = 1 \equiv 1 \pmod{17}

  • 2 2 ! = 4 4 ( m o d 17 ) 2^{2!} = 4 \equiv 4 \pmod{17}

  • 3 3 ! = ( 3 3 ) 2 = 2 7 2 1 0 2 ( m o d 17 ) 100 ( m o d 17 ) 15 ( m o d 17 ) 3^{3!} = (3^{3})^{2} = 27^{2} \equiv 10^{2} \pmod{17} \equiv 100 \pmod{17} \equiv 15 \pmod{17}

  • 4 4 ! = ( 4 2 ) 3 4 ( 1 ) 12 ( m o d 17 ) 1 ( m o d 17 ) 4^{4!} = (4^{2})^{3*4} \equiv (-1)^{12} \pmod{17} \equiv 1 \pmod{17}

  • 5 5 ! = 5 120 = 5 7 16 + 8 5 8 ( m o d 17 ) ( 5 2 ) 4 ( m o d 17 ) 5^{5!} = 5^{120} = 5^{7*16 + 8} \equiv 5^{8} \pmod{17} \equiv (5^{2})^{4} \pmod{17}

8 4 ( m o d 17 ) 6 4 2 ( m o d 17 ) ( 4 ) 2 ( m o d 17 ) 16 ( m o d 17 ) \equiv 8^{4} \pmod{17} \equiv 64^{2} \pmod{17} \equiv (-4)^{2} \pmod{17} \equiv 16 \pmod{17} ,

where another application of FLT was used in the third step of this last calculation. Thus

n = 1 17 ( n n ! ( m o d 17 ) ) = 1 + 4 + 15 + 1 + 16 + 11 = 48 14 ( m o d 17 ) \displaystyle\sum_{n=1}^{17} (n^{n!} \pmod{17}) = 1 + 4 + 15 + 1 + 16 + 11 = 48 \equiv \boxed{14} \pmod{17} .

Nice solution

Arsan Safeen - 5 years, 3 months ago

Log in to reply

Thanks! Nice problem. :)

Brian Charlesworth - 5 years, 3 months ago

Nice solution, BTW 17 is really a lucky number my birthday is on 17th January :)

Racchit Jain - 5 years, 3 months ago

Log in to reply

Then your 17th birthday will be doubly lucky. (Too bad it won't be in 2017, because then it would triple the luck.) :)

Brian Charlesworth - 5 years, 3 months ago

INA MERDEKA

Yasharyan Gaikwad - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...