Eliminate Some Powers Immediately

9 8 7 6 5 4 3 2 1 \Large 9^{8^{7^{6^{5^{4^{3^{2^{1}}}}}}}}

Find the last three digits of the above number.


The answer is 721.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Otto Bretscher
Mar 7, 2016

We will find the last four digits, hoping for some bonus points ;)

We can write the given number as 9 8 7 4 n 9^{8^{7^{4n}}} for some large integer n n . Now 7 4 = ( 50 1 ) 2 1 ( m o d 100 ) 7^4=(50-1)^2\equiv 1 \pmod{100} so that 7 4 n 1 ( m o d 100 ) 7^{4n}\equiv 1 \pmod{100} as well. Since ϕ ( 125 ) = 100 \phi(125)=100 , we can conclude that 8 7 4 n 8 ( m o d 125 ) 8^{7^{4n}}\equiv 8 \pmod{125} . This congruence holds modulo 8 as well, so that 8 7 4 n 8 ( m o d 1000 ) 8^{7^{4n}}\equiv 8 \pmod{1000} . The Carmichael's lambda function of 10000 is 500, and we can conclude that 9 8 7 4 n 9 8 6721 ( m o d 10000 ) 9^{8^{7^{4n}}}\equiv 9^8 \equiv \boxed{6721}\pmod{10000} .

Nice solution

Arsan Safeen - 5 years, 3 months ago

How are you able to do such problems? Please share

A Former Brilliant Member - 3 years, 10 months ago
Popular Power
Jun 7, 2019

We will denote 9 8 7 6 5 4 3 2 1 9^{8^{7^{6^{5^{4^{3^{2^{1}}}}}}}} as x x

9 400 1 ( m o d 1000 ) 9^{400} \equiv 1 \pmod{1000}

We have to find 8 7 6 5 4 3 2 1 ( m o d 400 ) {8^{7^{6^{5^{4^{3^{2^{1}}}}}}}} \pmod{400}

We can use Chinese remainder theorem.

We can write the given number as 8 7 4 n 8^{7^{4n}} for some large integer n n

8 7 4 n ( m o d 25 ) 8 ( 7 4 n ) ( m o d 20 ) ( m o d 25 ) 8 ( m o d 25 ) 8^{7^{4n}} \pmod{25} \Rightarrow 8^{(7^{4n}) \pmod{20}} \pmod{25} \Rightarrow 8 \pmod{25}

( 7 4 ( m o d 20 ) 1 ( m o d 20 ) 7^4 \pmod{20} \Rightarrow 1 \pmod{20} )

8 7 4 n 0 ( m o d 16 ) 8^{7^{4n}} \equiv 0 \pmod{16}

Applying Chinese remainder theorem and simplifying,

We get:

x ( m o d 1000 ) 9 8 ( m o d 1000 ) 1 10 ( 8 1 ) + 100 ( 8 2 ) ( m o d 1000 ) 721 ( m o d 1000 ) x \pmod{1000} \Rightarrow 9^8 \pmod{1000} \Rightarrow 1-10\binom{8}{1}+100\binom{8}{2} \pmod{1000} \Rightarrow 721 \pmod{1000}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...