Ludicrous Limit

Calculus Level 3

The function f : R 2 R f:\Bbb R^2\to \Bbb R is defined as f ( a , b ) = lim x ( a 1 / x + b 1 / x 2 ) x f(a,b)=\lim_{x\to\infty}\left(\frac{a^{1/x}+b^{1/x}}2\right)^x Find the value of f ( 12 , 3 ) f(12, 3) .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Maharnab Mitra
Jun 4, 2014

The limit is of an indeterminate form, i.e., 1 1^{ \infty} . We can rewrite the limit as e P e^P where P = lim x ( a 1 x + b 1 x 2 1 ) x P= \lim_{x \to \infty} (\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2} - 1)x .

Put x = 1 t x= \frac{1}{t} to get P = lim t 0 ( a t + b t 2 2 t ) P= \lim_{t \to 0} (\frac{a^t +b^t -2}{2t}) which is 0 0 \frac{0}{0} form.

Applying L'Hospital 's rule, we get: P = lim t 0 ( a t l n ( a ) + b t l n ( b ) 2 ) = l n ( a b ) P= \lim_{t \to 0} (\frac{a^t ln(a)+b^t ln(b) }{2}) = ln(\sqrt{ab})

So, e P = e l n ( a b ) = a b = 3 × 12 = 6 e^P = e^{ln(\sqrt{ab})} = \sqrt{ab} = \sqrt{3 \times 12} = 6 .

L hospital's rule rocks same solution here

SOUVIK PAL - 7 years ago

I think this is the 'standard' solution. Well done!

It's L'Hopital !

Abhishek Singh - 6 years, 12 months ago

Log in to reply

pronounciation is Lohpital's Rule

Shashank Rustagi - 6 years ago
Kenny Lau
Jul 11, 2014

f ( 12 , 3 ) = e lim x x [ ln ( 1 2 1 x + 3 1 x ) ln 2 ] = e lim h 0 ln ( 1 2 h + 3 h ) ln 2 h = e lim h 0 ln 3 h + ln ( 4 h + 1 ) ln 2 h = e lim h 0 ln 3 h h + ln ( 4 h + 1 ) ln 2 h = e ln 3 + lim h 0 ( ln 4 ) 4 h 4 h + 1 = e ln 3 + ln 4 lim h 0 ln 4 4 h + 1 = e ln 3 + ln 4 ln 4 2 = e ln 3 + ln 4 ln 2 = e ln 6 = 6 \Large\begin{array}{rcl} f(12,3)&=& e^{\lim\limits_{x\rightarrow\infty}x[\ln(12^{\frac1x}+3^{\frac1x})-\ln2]}\\ &=& e^{\lim\limits_{h\rightarrow0}\frac{\ln(12^h+3^h)-\ln2}h}\\ &=& e^{\lim\limits_{h\rightarrow0}\frac{\ln3^h+\ln(4^h+1)-\ln2}h}\\ &=& e^{\lim\limits_{h\rightarrow0}\frac{\ln3^h}h+\frac{\ln(4^h+1)-\ln2}h}\\ &=& e^{\ln3+\lim\limits_{h\rightarrow0}\frac{(\ln4)4^h}{4^h+1}}\\ &=& e^{\ln3+\ln4-\lim\limits_{h\rightarrow0}\frac{\ln4}{4^h+1}}\\ &=& e^{\ln3+\ln4-\frac{\ln4}2}\\ &=& e^{\ln3+\ln4-\ln2}\\ &=& e^{\ln6}\\ &=&6 \end{array}

Since I have skipped a lot of steps, please ask for clarification for whichever step you cannot comprehend.

Kenny Lau - 6 years, 11 months ago
Priyesh Pandey
Jun 4, 2014

Use AM>=G.M

I would be interested in how you used AM-GM could you expand on this?

Using Generalised Means we note that the limit can be written as lim x 0 ( a x + b x 2 ) 1 / x \lim_{x\to0}\left(\frac{a^x+b^x}{2}\right)^{1/x} Which we know is the Geometric Mean of two numbers. Therefore taking the geometric mean of 12 12 and 3 3 we have 12 × 3 = 36 = 6 \sqrt{12\times3}=\sqrt{36}=\boxed{6} .

Ankush Tiwari
Jun 23, 2014

lim x ( a 1 x + b 1 x 2 ) x \lim _{ x\rightarrow \infty }{(\frac{a^\frac{1}{x} + b^\frac{1}{x}}{2})^x }

= lim x ( 1 + a 1 x + b 1 x 2 2 ) x = \lim _{ x\rightarrow \infty }{(1+\frac{a^\frac{1}{x} + b^\frac{1}{x}-2}{2})^x }

= e l = e^l where l = lim x ( a 1 x + b 1 x 2 ) x 2 l = \lim _{ x\rightarrow \infty }{ \frac { ({ a }^{ \frac { 1 }{ x } }+{ b }^{ \frac { 1 }{ x } }-2)x }{ 2 } }

Put y = 1 x y = \frac{1}{x}

l = lim y 0 ( a y + b y 2 ) 2 y l = \lim _{ y\rightarrow 0 }{ \frac { ({ a }^{ y }+{ b }^{ y }-2) }{ 2y } }

= 1 2 [ lim y 0 a y 1 y + lim y 0 b y 1 y ] = \frac{1}{2}[ \lim _{ y\rightarrow 0 }{\frac{a^y - 1}{y}} + \lim _{ y\rightarrow 0 }{\frac{b^y - 1}{y}}]

= 1 2 ln a b \frac{1}{2}\ln { ab }

e l = a b = 12 3 = 6 \Rightarrow e^l = \sqrt { ab } = \sqrt{12*3} = 6

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...