Lugging more logs

Algebra Level 5

x x , y y , and z z are real numbers such that 2 x 3 y 5 z = 30 2^x3^y5^z = 30 . Find the minimum value of x 2 + y 2 + z 2 \\ x^2+y^2+z^2 . Write your answer to three decimal places.


The answer is 2.704.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Given that 2 x 3 y 5 z = 30 2^x3^y5^z = 30 , x ln 2 + y ln 3 + z ln 5 = ln 30 \implies x \ln 2 + y \ln 3 + z \ln 5 = \ln 30 . By Cauchy-Schwarz inequality :

( ln 2 2 + ln 2 3 + ln 2 5 ) ( x 2 + y 2 + z 2 ) ( x ln 2 + y ln 3 + z ln 5 ) 2 = ln 2 30 x 2 + y 2 + z 2 ln 2 30 ln 2 2 + ln 2 3 + ln 2 5 2.704 \begin{aligned} (\ln^2 2 + \ln^2 3 + \ln^2 5) (x^2+y^2+z^2) & \ge (x \ln 2 + y \ln 3 + z \ln 5)^2 = \ln^2 30 \\ \implies x^2+y^2+z^2 & \ge \frac {\ln^2 30}{\ln^2 2 + \ln^2 3 + \ln^2 5} \approx \boxed{2.704} \end{aligned}

Equality occurs when x ln 2 = y ln 3 = z ln 5 \dfrac x{\ln 2} = \dfrac y{\ln 3} = \dfrac z{\ln 5} .


By Lagrange multiplier (Note that this is a calculus solution but the question is algebra.)

Given that Given that 2 x 3 y 5 z = 30 2^x3^y5^z = 30 , x ln 2 + y ln 3 + z ln 5 = ln 30 \implies x \ln 2 + y \ln 3 + z \ln 5 = \ln 30 . Then we have

F ( x , y , z , λ ) = x 2 + y 2 + z 2 λ ( x ln 2 + y ln 3 + z ln 5 ln 30 ) F x = 2 x λ ln 2 F y = 2 y λ ln 3 F z = 2 z λ ln 5 F λ = x ln 2 + y ln 3 + z ln 5 ln 30 \begin{aligned} F(x,y,z,\lambda) & = x^2 + y^2 + z^2 - \lambda (x \ln 2 + y \ln 3 + z \ln 5 - \ln 30) \\ \frac {\partial F}{\partial x} & = 2x - \lambda \ln 2 \\ \frac {\partial F}{\partial y} & = 2y - \lambda \ln 3 \\ \frac {\partial F}{\partial z} & = 2z - \lambda \ln 5 \\ \frac {\partial F}{\partial \lambda} & = x \ln 2 + y \ln 3 + z \ln 5 - \ln 30 \end{aligned}

Putting F x = F y = F z = 0 \dfrac {\partial F}{\partial x} = \dfrac {\partial F}{\partial y} = \dfrac {\partial F}{\partial z} = 0 , x log 2 = y log 3 = z log 5 = λ 2 \implies \dfrac x{\log 2} = \dfrac y{\log 3} = \dfrac z{\log 5} = \dfrac \lambda 2 .

Putting F λ = 0 \dfrac {\partial F}{\partial \lambda} = 0 , λ 2 ( ln 2 2 + ln 2 3 + ln 2 5 ) = ln 30 \implies \dfrac \lambda 2 (\ln^2 2 + \ln^2 3 + \ln^2 5) = \ln 30 .

And

min ( x 2 + y 2 + z 2 ) = λ 2 4 ( ln 2 2 + ln 2 3 + ln 2 5 ) = ln 2 30 ln 2 2 + ln 2 3 + ln 2 5 2.704 \begin{aligned} \min(x^2 + y^2 + z^2) & = \dfrac {\lambda^2}4 (\ln^2 2 + \ln^2 3 + \ln^2 5) \\ & = \dfrac {\ln^2 30}{\ln^2 2 + \ln^2 3 + \ln^2 5} \\ & \approx \boxed{2.704} \end{aligned}

Pretty neat!

On how to find the equality case, you can refer to Foolish Learner's solution (though the equality case given using Lagrange's method can also be reached by the equality case of Cauchy-Schwarz).

Steven Jim - 10 months, 1 week ago

Log in to reply

Finally found the equality case. Upvote if you like the solution.

Chew-Seong Cheong - 10 months, 1 week ago

Log in to reply

Lovely!

As mentioned above, you can simply let x ln 2 = k \frac { x }{ \ln { 2 } } = k and solve for k k for a more elementary approach, but your solution is still good :)

Steven Jim - 10 months ago

2 x 3 y 5 z = 30 ( ln 2 ) d x + ( ln 3 ) d y + ( ln 5 ) d z = 0 2^x3^y5^z=30\implies (\ln 2)dx+(\ln 3)dy+(\ln 5)dz=0

x 2 + y 2 + z 2 = x^2+y^2+z^2= minimum \implies

x d x + y d y + z d z = 0 xdx+ydy+zdz=0

Using LaGrange's method of undetermined multipliers, we can write

x = λ ln 2 , y = λ ln 3 , z = λ ln 5 x=\lambda \ln 2,y=\lambda \ln 3,z=\lambda \ln 5

So, λ = ln 30 ( ln 2 ) 2 + ( ln 3 ) 2 + ( ln 5 ) 2 0.7951 \lambda =\dfrac {\ln 30}{(\ln 2)^2+(\ln 3)^2+(\ln 5)^2}\approx 0.7951

Hence x 0.551122 , y 0.8735 , z 1.27966 x\approx 0.551122,y\approx 0.8735,z\approx 1.27966

Therefore the minimum value of x 2 + y 2 + z 2 x^2+y^2+z^2 is 2.704 \approx \boxed {2.704} .

Good solution!

If possible though, can you elaborate on the second and third line? Thanks!

Steven Jim - 10 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...