Luke's Cryptarithm

Number Theory Level pending

If A B C D E F \overline{ABCDEF} is a 6-digit number with A B C D E F × 3 = B C D E F A \overline{ABCDEF} \times 3 = \overline{BCDEFA} , what is A + B + C + D + E + F A+B+C+D+E+F ?

15 18 27 24

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Luke Wang
Jun 2, 2021
  • 300000 A 300000A + 30000 B 30000B + 3000 C 3000C + 300 D 300D + 30 E 30E + 3 F 3F = 100000 B + 10000 C 100000B + 10000C + 1000 D + 100 E + 10 F + A 1000D + 100E + 10F + A
  • 299999 A = 70000 B + 7000 C + 700 D + 70 E + 7 F 299999A = 70000B + 7000C + 700D +70E + 7F
  • 42857 A = 10000 B + 1000 C + 100 D + 10 E + F 42857A = 10000B + 1000C + 100D + 10E + F
  • A A can only be one or two as if A > 3 , B > 10. A > 3, B > 10.
  • If A = 1 A = 1 , B = 4 B = 4 , C = 2 C = 2 , D = 8 D = 8 , E = 5 E = 5 , F = 7 F = 7
  • If A = 2 , B = 8 , C = 5 , D = 7 , E = 1 , F = 4 A = 2, B = 8, C = 5, D = 7, E = 1, F = 4
  • 1 + 4 + 2 + 8 + 5 + 7 = 27 1 + 4 + 2 + 8 + 5 + 7 = 27

Why can't A = 2?

Saya Suka - 1 week, 3 days ago

I've updated the solution :)

Luke Wang - 1 week, 2 days ago

A B C D E F × 3 = B C D E F A Let N = B C D E F 3 × 1 0 5 A + 3 N = 10 N + A 7 N = 299999 A N = 42857 A B C D E F = 42857 A \begin{aligned} \overline{A\blue{BCDEF}} \times 3 & = \overline{\blue{BCDEF}A} & \small \blue{\text{Let }N = \overline{BCDEF}} \\ 3\times 10^5 A + 3 \blue N & = 10 \blue N + A \\ 7 N & = 299999 A \\ \implies N & = 42857 A \\ \overline{BCDEF} & = 42857 A \end{aligned}

This means that A = 1 A=1 or 2 2 , because if A 3 A \ge 3 , B C D E F \overline{BCDEF} would be 6 6 digits. Then we have:

{ A = 1 B C D E F = 42857 A B C D E F × 3 = 142857 × 3 = 428571 = B C D E F A A = 2 B C D E F = 85714 A B C D E F × 3 = 285714 × 3 = 857142 = B C D E F A { A = 1 A + B + C + D + E + F = 1 + 4 + 2 + 8 + 5 + 7 = 27 A = 2 A + B + C + D + E + F = 2 + 8 + 5 + 7 + 1 + 4 = 27 \begin{cases} A = 1 & \implies \overline{BCDEF} = 42857 \implies \overline{ABCDEF} \times 3 = 142857 \times 3 = 428571 = \overline{BCDEFA} \\ A = 2 & \implies \overline{BCDEF} = 85714 \implies \overline{ABCDEF} \times 3 = 285714 \times 3 = 857142 = \overline{BCDEFA} \end{cases} \\ \implies \begin{cases} A = 1 & \implies A+B+C+D+E+F = 1+4+2+8+5+7 = 27 \\ A = 2 & \implies A+B+C+D+E+F = 2+8+5+7+1+4 = 27 \end{cases}

The required answer is 27 \boxed{27} .

Saya Suka
Jun 2, 2021

{ ABCDEF } × 3 = { BCDEFA }

Rewriting the above while giving each digits their own 'house' values, we get :

300000A + 30000B + 3000C + 300D + 30E + 3F = 100000B + 10000C + 1000D + 100E + 10F + A

Rearranging the above to make the same variables to stay on the same sides (with the smaller valued multiples migrating to where the bigger ones' original sides), we get :

(300000 – 1) × A = (10 – 3) × (10000B + 1000C + 100D + 10E + F)
299999A = 7(10000B + 1000C + 100D + 10E + F)
42857A = 10000B + 1000C + 100D + 10E + F

Now, every variable is representing a one digit number, so
A, B, C, D, E & F < 10
and
A > 0 , B > 0

If B < 10,
then A < 10 × 10000 / 42857 = 2.333341

A = 1 will give B = 4, C = 2, D = 8, E = 5 & F = 7
while on the other hand,
A = 2 will give B = 8, C = 5, D = 7, E = 1 & F = 4

Anyway, the answer would be
= A + B + C + D + E + F
= 1 + 4 + 2 + 8 + 5 + 7
= 2 + 8 + 5 + 7 + 1 + 4
= 27

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...