M ? N M \space ? \space N

M = 1 8 + 2 8 + 3 8 + + a 8 N = 1 4 + 3 4 + 5 4 + + a 4 \large \begin{aligned} M & = \frac 18 + \frac 28 + \frac 38 + \ldots + \frac a8 \\ N & = \frac 14+\frac34+\frac 54 + \ldots + \frac a4 \end{aligned}

Find the relationship between M M and N N for constant a a .

N > M N >M Sometimes N > M , N>M, sometimes M > N M>N M > N M>N

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Naren Bhandari
Mar 3, 2018

Given that N = 1 4 + 3 4 + 5 4 + + a 4 N = 1 4 p = 1 a ( 2 p 1 ) = a 2 4 \begin{aligned} N & = \frac{1}{4}+ \frac{3}{4} + \frac{5}{4} +\cdots + \frac{a} {4} \\& N = \frac{1}{4}\displaystyle\sum_{p=1}^{a} {(2p-1)} =\frac{ a^2}{4} \end{aligned} M = 1 8 + 2 8 + 3 8 + + a 8 M = 1 8 p = 1 a p = 1 8 a ( a + 1 ) 2 M = a 2 16 + a 16 M = 1 4 N + a 16 M = N 3 N 4 + a 16 M N = 12 N + a 16 < 0 \begin{aligned} M & = \frac{1}{8} + \frac{2}{8} +\frac{3}{8} +\cdots + \frac{a}{8} \\& M = \frac{1}{8} \displaystyle\sum_{p =1}^{a} p= \frac{1}{8} \frac{a(a+1)}{2} \\& M = \frac{a^2}{16} + \frac{a}{16} \implies M = \frac{1}{4} N + \frac{a}{16}\\& M = N -\frac{3N}{4} +\frac{a}{16} \implies M - N = \frac{-12N + a}{16} < 0 \end{aligned} Hence , N > M \boxed{N> M} since 12 N + a < 0 -12N+a<0

Given that

{ M = k = 1 a k 8 N = k = 1 a 2 k 1 4 = 4 k = 1 a k 8 2 k = 1 a 1 8 > 4 k = 1 a k 8 2 k = 1 a k 8 = 2 M \begin{cases} M = \displaystyle \sum_{k=1}^a \frac k8 \\ N = \displaystyle \sum_{k=1}^a \frac {2k-1}4 = 4\sum_{k=1}^a \frac k8 - 2\sum_{k=1}^a \frac 18 > 4\sum_{k=1}^a \frac k8 - 2\sum_{k=1}^a \frac k8 = 2M \end{cases}

N > 2 M N > M \implies N > 2M \implies \boxed{N > M} .

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...