m x e m x 2 m x e^{m x^2} and ln x \ln x

Calculus Level 3

If m R , x > 0 , m x e m x 2 ln x m \in \mathbb R, \forall x>0, m x e^{m x^2} \geq \ln x , find the minimum value of m m .

1 e 2 \dfrac{1}{e^2} 1 2 e \dfrac{1}{2e} 1 e \dfrac{1}{e} 1 e \dfrac{1}{\sqrt{e}}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 29, 2020

Unlike the problem question suggest there is only one value of m m , let it be m 1 m_1 , that satisfies m x e m x 2 ln x mxe^{mx^2} \ge \ln x for all real x > 0 x > 0 .

Let us consider the equation m x e m x 2 = ln x mxe^{mx^2} = \ln x . We find that (see graphs) for m > m 1 m > m_1 , there is no solution to the equation or m x e m x 2 > ln x , x > 0 mxe^{mx^2} > \ln x, \forall x > 0 . When m = m 1 m=m_1 , there is only one solution and m x e m x 2 ln x , x > 0 mxe^{mx^2} \ge \ln x, \forall x > 0 is true. For m < m 1 m < m_1 the inequality does not hold.

When m = m 1 m=m_1 , we have m 1 x e m 1 x 2 = ln x . . . ( ) m_1xe^{m_1x^2} = \ln x\ ...(*) and

d d x m 1 x e m 1 x 2 = d d x ln x m 1 e m 1 x 2 + 2 m 1 2 x 2 e m 1 x 2 = 1 x As ( ) : m 1 x e m 1 x 2 = ln x ln x + 3 m 1 x 2 ln x = 1 m 1 = 1 ln x 2 x 2 ln x ( ) : 1 ln x 2 x ln x e 1 ln x 2 ln x = ln x ( 1 ln x ) e 1 ln x 2 ln x = 2 x ln 2 x x = e I solved it using numerical method. m 1 = 1 2 e \begin{aligned} \frac d{dx} m_1xe^{m_1x^2} & = \frac d{dx} \ln x \\ m_1e^{m_1x^2} + 2m_1^2x^2e^{m_1x^2} & = \frac 1x & \small \blue{\text{As }(*): m_1xe^{m_1x^2} = \ln x} \\ \ln x + 3m_1x^2 \ln x & = 1 \\ \implies m_1 & = \frac {1-\ln x}{2x^2\ln x} \\ \implies (*): \quad \frac {1-\ln x}{2x\ln x} e^{\frac {1-\ln x}{2\ln x}} & = \ln x \\ (1-\ln x)e^{\frac {1-\ln x}{2\ln x}} & = 2x \ln^2 x \\ \implies x & = \sqrt e & \small \blue{\text{I solved it using numerical method.}} \\ \implies m_1 & = \boxed{\frac 1{2e}} \end{aligned}

How did you calculate x = e x=\sqrt{e} from the previous line?

Atomsky Jahid - 1 year ago

Log in to reply

Numerically.

Chew-Seong Cheong - 1 year ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...