√(M1+M2+...+M100)

Geometry Level pending

Triangle ABC is isosceles with AB=AC=2. There are 100 points P1,P2,P3,....,P99, P100 on BC. Write Mi=APi^2+BPi.PiC (i=1,2,3....100). Find the value of √(M1+M2+...+M100).


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Brian Moehring
Aug 8, 2018

Draw a circle with radius 2 2 and center A A . Then B C \overline{BC} is a chord of the circle, and for any i i the segment A P i \overline{AP_i} extends to a diameter of the circle S i A P i T i . \overline{S_iAP_iT_i}. It follows from the power of a point theorem for two secants that S i P i P i T i = B P i P i C S_iP_i \cdot P_iT_i= BP_i\cdot P_iC Therefore, 4 A P i 2 = ( 2 + A P i ) ( 2 A P i ) = S i P i P i T i = B P i P i C M i = A P i 2 + B P i P i C = 4 4 - AP_i^2 = (2+AP_i)\cdot (2-AP_i) = S_iP_i \cdot P_iT_i= BP_i\cdot P_iC \implies M_i = AP_i^2 + BP_i \cdot P_iC = 4

Since this is true for all i i , M 1 + M 2 + + M 100 = 100 4 = 20 \sqrt{M_1 + M_2 + \cdots + M_{100}} = \sqrt{100 \cdot 4} = \boxed{20}

Consider Δ A B C A B = A C = 2 (Given) M i = ( A P i ) 2 + B P i × C P i Construct A D B C We have, B D = C D Since Δ A B C is isoceles. Let, B D = C D = x P i D = x i M i = ( A P i ) 2 + B P i × C P i = ( A P i ) 2 + ( x x i ) × ( x + x i ) = ( A P i ) 2 + ( x 2 x i 2 ) = A D 2 + x 2 Since A P i 2 x i 2 = A P i 2 P i D 2 = A D 2 = A B 2 = 4 M i = 4 i = 1 100 M i = 4 × 100 = 20 \large\begin{aligned}\hspace{20mm}\text{Consider }&\Delta ABC\\\\ AB&=AC=2\hspace{4mm}\color{#3D99F6}\small\text{ (Given) }\\ M_{i}&=(AP_{i})^2+BP_{i}\times CP_{i}\\\\ \text{Construct } AD&\perp BC\\ \text{We have, }\\ BD&=CD\hspace{4mm}\color{#3D99F6}\small\text{Since }\Delta ABC \text{ is isoceles. }\\\\ \text{Let, } \\ BD&=CD=x\\ P_{i}D&=x_{i}\\ M_{i}&=(AP_{i})^2+BP_{i}\times CP_{i}\\ &=(AP_{i})^2+(x-x_{i})\times (x+x_{i})\\ &=(AP_{i})^2+(x^2-{x_{i}}^2)\\ &=AD^2+x^2\hspace{4mm}\color{#3D99F6} \small \text{Since }AP_{i}^2-{x_{i}}^2=AP_{i}^2-{P_{i}D}^2=AD^2\\ &=AB^2=4\\ \implies M_{i}&=4\\ \implies \sqrt{\sum_{i=1}^{100}M_{i}}&= \sqrt{4 \times100}=\color{#EC7300}\boxed{\color{#333333}20} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...