Macaroni and cheese

Calculus Level 5

j = 2 k = 1 ( 1 ) j j k j = ? \large \sum_{j=2}^\infty \sum_{k=1}^\infty \dfrac{(-1)^j}{jk^j} = \, ?

Give your answer to 3 decimal places.


The answer is 0.577.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 10, 2016

S = j = 2 k = 1 ( 1 ) j j k j = k = 1 ( 1 k + j = 1 ( 1 ) j j k j ) By Maclaurin series = k = 1 ( 1 k ln ( 1 + 1 k ) ) = γ 0.577 γ = Euler-Mascheroni constant \begin{aligned} S & = \sum_{j=2}^\infty \sum_{k=1}^\infty \frac {(-1)^j}{jk^j} \\ & = \sum_{k=1}^\infty \left(\frac 1k + \color{#3D99F6}{\sum_{j=1}^\infty \frac {(-1)^j}{jk^j}}\right) & \small \color{#3D99F6}{\text{By Maclaurin series}} \\ & = \sum_{k=1}^\infty \left(\frac 1k \color{#3D99F6}{- \ln \left(1+\frac 1k \right)} \right) \\ & = \color{#3D99F6}{\gamma} \approx \boxed{0.577} & \small \color{#3D99F6}{\gamma = \text{Euler-Mascheroni constant}} \end{aligned}


References:

The Euler- Mascheroni constant γ \gamma fulfills γ = j = 2 ( 1 ) j ζ ( j ) j = j = 2 ( 1 ) j k = 1 1 k j j = j = 2 k = 1 ( 1 ) j j k j 0.577215... \displaystyle \gamma = \sum_{j = 2}^{\infty} (-1)^j \frac{\zeta(j)}{j} = \sum_{j = 2}^{\infty} (-1)^j \frac{\sum_{k = 1}^{\infty} \frac{1}{k^j}}{j} = \sum_{j = 2}^{\infty} \sum_{k = 1}^{\infty} \frac{(-1)^j}{jk^j} \approx 0.577215... There are a lot of forms for defining this constant... althought this result can be proved from other definition...

Note.- ζ ( ) \zeta(\cdot) is the Riemann-Zeta function

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...