Machenics problem by Aman

Distance covered by an accelerating particle of mass 50kg at any time t is given by the function:- d = 20 t + 10 t 2 d=20t+10t^{2} Where d is the distance covered by particle(in meter) in t seconds Calculate the force that particle is experiencing( in newtons)


The answer is 1000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

s = 20 t + 10 t 2 D i f f e r e n t i a t i n g b o t h s i d e s w . r . t t i m e , d d t s = d d t ( 20 t + 10 t 2 ) = 20 + 20 t D i f f e r e n t i a t i n g a g a i n w . r . t t i m e d 2 d t 2 s = d d t ( 20 + 20 t ) = 20 m s 2 N o w , F o r c e = m a s s × a c c e l e r a t i o n = 50 k g × 20 m s 2 = 1000 N \quad \quad \quad \quad \quad \quad \quad s\quad =\quad 20t\quad +\quad 10{ t }^{ 2 }\\ Differentiating\quad both\quad sides\quad w.r.t\quad time,\\ \frac { d }{ dt } s\quad =\quad \frac { d }{ dt } (20t+10{ t }^{ 2 })\quad =\quad 20+20t\\ Differentiating\quad again\quad w.r.t\quad time\\ \frac { { d }^{ 2 } }{ { dt }^{ 2 } } s\quad =\quad \frac { d }{ dt } (20+20t)\quad =\quad 20m{ s }^{ -2 }\\ Now,\quad Force\quad =\quad mass\quad \times \quad acceleration\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad 50kg\quad \times \quad 20m{ s }^{ -2 }\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad 1000\quad N

Cheers!!:)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...