Maclaurin series?

Calculus Level 3

L = lim x 0 e x a x ( a x + e x ) + ln ( 1 + x ) e x 1 e x sin x + sin x ( 1 + 2 e x sin x ) + e x cos ( 2 x ) e 2 x 1 L = \lim_{x\to0} \dfrac{e^x a^x-(a^x+e^x)+\ln{(1+x)^{e^{x}-1}} -e^x\sin{x}+\sin x(1+2e^x\sin{x})+e^x\cos{(2x)} }{e^{2x}-1}

Let a a be a constant positive real number , find the value of L L .

Clarification : e e denotes Euler's number , e 2.71828 e \approx 2.71828 .

None of these choices 2 Limit does not exist 1 2 -\frac{1}{2} 0 0 1 2 \frac{1}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 31, 2016

L = lim x 0 e x a x ( a x + e x ) + ln ( 1 + x ) e x 1 e x sin x + sin x ( 1 + 2 e x sin x ) + e x cos ( 2 x ) e 2 x 1 = lim x 0 e x a x a x e x + ln ( 1 + x ) e x 1 e x sin x + sin x + 2 e x sin 2 x + e x cos ( 2 x ) e 2 x 1 = lim x 0 ( e x 1 ) a x + ( e x 1 ) ln ( 1 + x ) ( e x 1 ) sin x e x ( 1 2 sin 2 x ) + e x cos ( 2 x ) ( e x 1 ) ( e x + 1 ) = lim x 0 ( e x 1 ) a x + ( e x 1 ) ln ( 1 + x ) ( e x 1 ) sin x e x cos ( 2 x ) + e x cos ( 2 x ) ( e x 1 ) ( e x + 1 ) = lim x 0 a x + ln ( 1 + x ) sin x e x + 1 = 1 + 0 0 1 + 1 = 1 2 \begin{aligned} L & = \lim_{x\to0} \frac{e^x a^x-(a^x+e^x)+\ln{(1+x)^{e^{x}-1}} -e^x\sin{x}+\sin x(1+2e^x\sin{x})+e^x\cos{(2x)} }{e^{2x}-1} \\ & = \lim_{x\to 0} \frac{e^x a^x-a^x\color{#D61F06}{-e^x}+\ln (1+x)^{e^{x}-1} -e^x\sin{x}+\sin x\color{#D61F06}{+2e^x\sin^2{x}}+e^x\cos{(2x)}}{e^{2x}-1} \\ & = \lim_{x\to 0} \frac{(e^x -1) a^x+(e^x -1) \ln (1+x) - (e^x-1) \sin{x}\color{#D61F06}{- e^x(1-2\sin^2{x})}+e^x\cos{(2x)}}{(e^x-1)(e^x+1)} \\ & = \lim_{x\to 0} \frac{(e^x -1) a^x+(e^x -1) \ln (1+x) - (e^x-1) \sin{x}\color{#D61F06}{- e^x \cos (2x)}+e^x\cos{(2x)}}{(e^x-1)(e^x+1)} \\ & = \lim_{x\to 0} \frac{a^x+\ln (1+x) - \sin{x}}{e^x+1} \\ & = \frac{1+0-0}{1+1} \\ & = \boxed{\dfrac{1}{2}} \end{aligned}

Let function in numerator be f ( x ) f(x) and in denominator be g ( x ) g(x) .

By using L'Hospital rule :

Now L i m i t r e q = L t x > 0 f ( x ) / g ( x ) = L t x > 0 f ( x ) / g ( x ) Limit_{req} = Lt_{x-> 0 } f(x)/g(x) = Lt_{x->0} f^{'}(x)/g^{'}(x) .

Since this argumant of limit is not of form 0/0 , we find

L r e q = f ( 0 ) / g ( 0 ) = 0.5 L_{req}= f^{'}(0)/g^{'}(0) = \boxed{0.5} .

Aakash Khandelwal - 5 years ago

In the third line it should be (1-2(sinx)^2) Probably you forgot to remove e^x :)

Yuri Lombardo - 4 years, 10 months ago

Log in to reply

Thanks. I have changed it.

Chew-Seong Cheong - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...