Mad exponent and integration

Calculus Level 4

0 1 2 x ( 1 + 5 ) x + ( 3 + 5 ) x d x \large \int_{0}^{1}\frac{2^{x}}{(1+\sqrt{5})^{x}+(3+\sqrt{5})^{x}} \, dx

Find the value of the closed form of the above integral to 3 decimal places.


The answer is 0.353.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Jul 27, 2017

If ϕ = 1 2 ( 1 + 5 ) \phi = \tfrac12(1 + \sqrt{5}) is the Golden Ratio, then ϕ 2 = ϕ + 1 \phi^2 = \phi + 1 , so that 3 + 5 = 2 ϕ 2 3+\sqrt{5} = 2\phi^2 , and so the integral is I = 0 1 2 x ( 2 ϕ ) x + ( 2 ϕ 2 ) x = 0 1 d x ϕ x + ϕ 2 x = 0 1 ϕ x ϕ 2 x + ϕ 3 x d x I \; = \; \int_0^1 \frac{2^x}{(2\phi)^x + (2\phi^2)^{x}} \; = \; \int_0^1 \frac{dx}{\phi^x + \phi^{2x}} \; = \; \int_0^1 \frac{\phi^x}{\phi^{2x} + \phi^{3x}}\,dx and hence the substitution u = ϕ x u = \phi^x yields I = 1 ln ϕ 1 ϕ d u u 2 ( 1 + u ) = 1 ln ϕ 1 ϕ ( 1 u 2 1 u + 1 u + 1 ) d u = 1 ln ϕ [ u 1 + ln ( u + 1 u ) ] 1 ϕ = 1 ln ϕ [ ϕ 1 ϕ + ln ( 1 2 ϕ ) ] = 0.353338... \begin{aligned} I & = \; \frac{1}{\ln\phi}\int_1^\phi \frac{du}{u^2(1+u)} \; = \; \frac{1}{\ln\phi}\int_1^\phi \left(\frac{1}{u^2} - \frac{1}{u} + \frac{1}{u+1}\right)\,du \\ & = \; \frac{1}{\ln\phi}\Big[-u^{-1} + \ln\left(\frac{u+1}{u}\right)\Big]_1^\phi \; = \; \frac{1}{\ln\phi}\Big[\frac{\phi-1}{\phi} + \ln(\tfrac12\phi\big)\Big] \\ & = \; \boxed{0.353338...} \end{aligned}

Tommy Li
Jul 27, 2017

y = ( 1 + 5 2 ) x , d y d x = ( 1 + 5 2 ) x ln ( 1 + 5 2 ) \large y = \left(\frac{1+\sqrt{5}}{2}\right)^{x} , \frac{dy}{dx} = \left(\frac{1+\sqrt{5}}{2}\right)^x\ln\left(\frac{1+\sqrt{5}}{2}\right)

0 1 2 x ( 1 + 5 ) x + ( 3 + 5 ) x d x \large \int_{0}^{1}\frac{2^{x}}{(1+\sqrt{5})^{x}+(3+\sqrt{5})^{x}} dx

= 0 1 2 x ( 2 y ) x + ( 2 y 2 ) x d x \large = \int_{0}^{1}\frac{2^{x}}{(2y)^{x}+(2y^2)^{x}} dx

= ( ln ( 1 + 5 2 ) ) 1 1 1 + 5 2 1 y 2 ( y + 1 ) d y \large = \left(\ln\left(\frac{1+\sqrt{5}}{2}\right)\right)^{-1} \int_{1}^{\frac{1+\sqrt{5}}{2}}\frac{1}{y^2(y+1)}dy

= ( ln ( 1 + 5 2 ) ) 1 1 1 + 5 2 1 y 2 + 1 y + 1 1 y d y \large = \left(\ln\left(\frac{1+\sqrt{5}}{2}\right)\right)^{-1} \int_{1}^{\frac{1+\sqrt{5}}{2}}\frac{1}{y^2}+\frac{1}{y+1}-\frac{1}{y} dy

= ( ln ( 1 + 5 2 ) ) 1 [ 1 y + ln ( y + 1 ) ln ( y ) ] 1 1 + 5 2 \large = \left(\ln\left(\frac{1+\sqrt{5}}{2}\right)\right)^{-1}\left[-\frac{1}{y}+\ln(y+1)-\ln(y)\right]_{1}^{\frac{1+\sqrt{5}}{2}}

= 0.353 (corr. to 3 sig. fig. ) \large = 0.353 \text{ (corr. to 3 sig. fig. ) }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...