Mad factorials!

( n = 1 2017 ! ( n 2017 ! ! ) ) 2017 ! ! \large \left( \sum_{n=1}^{2017!}(n^{2017}!!)\right)^{2017!!}

Find the last two digits of the expression above .

Notations :

  • ! ! denotes the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .

  • ! ! !! denotes the double factorial notation:

    For an even number & n > 0 n>0 , n ! ! = n × ( n 2 ) × × 4 × 2. n!!=n\times (n-2)\times \cdots\times 4\times 2.

    For an odd number & n > 0 n>0 , n ! ! = n × ( n 2 ) × × 3 × 1. n!!=n\times (n-2)\times \cdots\times 3\times 1.


The answer is 76.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tommy Li
Apr 12, 2017

I observed some patterns :

(1) : x 1 ( m o d 8 ) x ! ! 25 ( m o d 100 ) \large x \equiv 1 \pmod{8} \Rightarrow x!! \equiv 25\pmod{100} for x 15 \large x \geq 15

(2) : ( 2 k + 1 ) n 1 ( m o d 8 ) \large (2k+1)^{n} \equiv 1 \pmod{8} where k 0 \large k \geq 0 and n 2 \large n \geq 2

(3) : ( ( 2 x ) 2017 ! ! ) 0 ( m o d 100 ) \large ((2x)^{2017}!!) \equiv 0 \pmod{100}


By (3) :

n = 1 2017 ! + 1 ( n 2017 ! ! ) 1 2017 ! ! + 3 2017 ! ! + 5 2017 ! ! + 7 2017 ! ! + ( m o d 100 ) \displaystyle \large \sum_{n=1}^{2017!+1}(n^{2017}!!) \equiv 1^{2017}!!+3^{2017}!!+5^{2017}!!+ 7^{2017}!! +\dots \pmod{100}

By (1) & (2) :

n = 1 2017 ! + 1 ( n 2017 ! ! ) 1 + 25 + + 25 1 + ( 4 k 1 ) ( 25 ) 76 ( m o d 100 ) \displaystyle \large \sum_{n=1}^{2017!+1}(n^{2017}!!) \equiv 1+25+\dots+25 \equiv 1+(4k-1)(25) \equiv 76 \pmod{100}

( n = 1 2017 ! + 1 ( n 2017 ! ! ) ) 2017 ! ! 76 ( m o d 100 ) \displaystyle \large \left( \sum_{n=1}^{2017!+1}(n^{2017}!!) \right)^{2017!!} \equiv 76 \pmod{100}

Answer = 76 \large = 76

Which version of this problem is better ?

Which version of this problem is better ?

Tommy Li - 4 years, 1 month ago

I think there's a mistake in pattern (2). If k = 1 k = 1 and n = 3 n = 3 , then ( 2 k + 1 ) n 3 3 3 ≢ 1 ( m o d 8 ) (2k + 1)^n \equiv 3^3 \equiv 3 \not \equiv 1 \pmod 8 . I think (2) should say something like ( 2 n + 1 ) ( 2 k + 1 ) 2 n + 1 ( m o d 8 ) (2n + 1)(2k + 1) \equiv 2n + 1 \pmod 8 or ( m o d 4 ) (\bmod\ 4) . Using this pattern, I found a different version of (1): x 1 , 7 ( m o d 8 ) x ! ! 25 ( m o d 100 ) x \equiv 1,7 \pmod 8 \implies x!! \equiv 25 \pmod{100} and x 3 , 5 ( m o d 8 ) x ! ! 75 ( m o d 100 ) x \equiv 3,5 \pmod 8 \implies x!! \equiv 75 \pmod{100} . Then, by (1) and (2), n = 1 2017 ! n 2017 ! ! 1 + 75 + 75 + 25 + 25 + 75 + 75 + 25 + + 75 + 25 76 ( m o d 100 ) . \sum_{n = 1}^{2017!} n^{2017}!! \equiv 1 + 75 + 75 + 25 + 25 + 75 + 75 + 25 + \cdots + 75 + 25 \equiv 76 \pmod{100}.

Matt Janko - 5 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...