∫ − ∞ ∞ x 2 + 1 ln ( x 2 + 1 ) d x = π ln k
Find k which satisfies the equation above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Another great solution for da' "Cool Man"!
I = ∫ − ∞ ∞ x 2 + 1 ln ( x 2 + 1 ) d x = 2 ∫ 0 ∞ x 2 + 1 ln ( x 2 + 1 ) d x = 2 ∫ 0 2 π ln ( sec 2 θ ) d θ = 4 ∫ 2 π 0 ln ( cos θ ) d θ = 2 ∫ 2 π 0 ( ln ( cos θ ) + ln ( sin θ ) ) d θ = 2 ∫ 2 π 0 ln ( 2 sin 2 θ ) d θ = 2 ∫ 2 π 0 ln ( sin 2 θ ) d θ + 2 ∫ 0 2 π ln 2 d θ = ∫ π 0 ln ( sin ϕ ) d ϕ + 2 ∫ 0 2 π ln 2 d θ = 2 ∫ 2 π 0 ln ( sin ϕ ) d ϕ + π ln 2 = 2 I + π ln 2 = 2 π ln 2 = π ln 4 Since the integrand is even Let x = tan θ ⟹ d x = sec 2 θ d θ Using ∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x Let ϕ = 2 θ ⟹ d ϕ = 2 d θ Since sin ϕ is symmetrical about 2 π Note that ∫ 2 π 0 ln ( sin θ ) d θ = ∫ 2 π 0 ln ( cos θ ) d θ = 4 I
Therefore, a = 4 .
Problem Loading...
Note Loading...
Set Loading...
Let F ( a ) = 2 ∫ 0 ∞ 1 + x 2 ln ( 1 + a 2 x 2 ) d x , F ( 0 ) = 0
F ′ ( a ) = 4 a ∫ 0 ∞ ( 1 + a 2 x 2 ) ( 1 + x 2 ) x 2 d x
= a 2 − 1 4 a ∫ 0 ∞ [ 1 + x 2 1 − 1 + a 2 x 2 1 ] d x
= a 2 − 1 4 a [ tan − 1 x − a 1 tan − 1 a x ] 0 ∞
= ( a − 1 ) ( a + 1 ) 4 a [ 2 π − 2 a π ]
= a + 1 2 π ⟹ F ( a ) = ∫ a + 1 2 π d a
⟹ F ( a ) = 2 π ln ( a + 1 ) ( F ( 0 ) = 0 )
In question we need to evaluate F ( 1 ) which comes out to be 2 π ln ( 1 + 1 ) = π ln 4 .