Mad Integral

Calculus Level 4

ln ( x 2 + 1 ) x 2 + 1 d x = π ln k \large \int^{\infty}_{-\infty} \frac{\ln{(x^2+1)}}{x^2+1} dx = \pi \ln{k}

Find k k which satisfies the equation above.


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Jan 23, 2018

Let F ( a ) = 2 0 ln ( 1 + a 2 x 2 ) 1 + x 2 d x , F ( 0 ) = 0 F(a)= 2\displaystyle\int_0^\infty \dfrac {\ln(1+a^2x^2)}{1+x^2} \mathrm{d}x~~,\small{F(0)=0}

F ( a ) = 4 a 0 x 2 ( 1 + a 2 x 2 ) ( 1 + x 2 ) d x F'(a)= 4a\int_0^\infty \dfrac {x^2}{(1+a^2x^2)(1+x^2)} \mathrm{d}x

= 4 a a 2 1 0 [ 1 1 + x 2 1 1 + a 2 x 2 ] d x =\dfrac{4a}{a^2-1}\int_0^\infty \left[\dfrac {1}{1+x^2}-\dfrac{1}{1+a^2x^2}\right] \mathrm{d}x

= 4 a a 2 1 [ tan 1 x 1 a tan 1 a x ] 0 =\dfrac{4a}{a^2-1}\left[\tan^{-1} x-\dfrac 1a\tan^{-1} ax\right]_0^{\infty}

= 4 a ( a 1 ) ( a + 1 ) [ π 2 π 2 a ] =\dfrac{4a}{(a-1)(a+1)}\left[\dfrac{\pi}2-\dfrac{\pi}{2a}\right]

= 2 π a + 1 F ( a ) = 2 π d a a + 1 =\dfrac{2\pi}{a+1}\implies F(a)=\int\dfrac{2\pi\mathrm{d}a}{a+1}

F ( a ) = 2 π ln ( a + 1 ) ( F ( 0 ) = 0 ) \implies F(a)=2\pi\ln(a+1)~~~~\small{(F(0)=0)}

In question we need to evaluate F ( 1 ) F(1) which comes out to be 2 π ln ( 1 + 1 ) = π ln 4 2\pi\ln(1+1)=\pi \ln \boxed{\color{#D61F06}{4}} .

Another great solution for da' "Cool Man"!

tom engelsman - 3 years, 4 months ago

Log in to reply

XD Thanks!

Rishabh Jain - 3 years, 4 months ago
Chew-Seong Cheong
Jan 23, 2018

I = ln ( x 2 + 1 ) x 2 + 1 d x Since the integrand is even = 2 0 ln ( x 2 + 1 ) x 2 + 1 d x Let x = tan θ d x = sec 2 θ d θ = 2 0 π 2 ln ( sec 2 θ ) d θ = 4 π 2 0 ln ( cos θ ) d θ Using a b f ( x ) d x = a b f ( a + b x ) d x = 2 π 2 0 ( ln ( cos θ ) + ln ( sin θ ) ) d θ = 2 π 2 0 ln ( sin 2 θ 2 ) d θ = 2 π 2 0 ln ( sin 2 θ ) d θ + 2 0 π 2 ln 2 d θ Let ϕ = 2 θ d ϕ = 2 d θ = π 0 ln ( sin ϕ ) d ϕ + 2 0 π 2 ln 2 d θ Since sin ϕ is symmetrical about π 2 = 2 π 2 0 ln ( sin ϕ ) d ϕ + π ln 2 Note that π 2 0 ln ( sin θ ) d θ = π 2 0 ln ( cos θ ) d θ = I 4 = I 2 + π ln 2 = 2 π ln 2 = π ln 4 \begin{aligned} I & = \int_{-\infty}^\infty \frac {\ln(x^2+1)}{x^2+1} dx & \small \color{#3D99F6} \text{Since the integrand is even} \\ & = 2 \int_0^\infty \frac {\ln(x^2+1)}{x^2+1} dx & \small \color{#3D99F6} \text{Let }x = \tan \theta \implies dx = \sec^2 \theta \ d\theta \\ & = 2 \int_0^\frac \pi 2 \ln(\sec^2 \theta)\ d\theta \\ & = \color{#D61F06} 4 \int^0_\frac \pi 2 \ln(\cos \theta) \ d\theta & \small \color{#3D99F6} \text{Using }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = 2 \int^0_\frac \pi 2 (\ln(\cos \theta) + {\color{#D61F06}\ln(\sin \theta)}) \ d\theta \\ & = 2 \int^0_\frac \pi 2 \ln \left(\frac {\sin 2 \theta}2\right) d\theta \\ & = {\color{#3D99F6}2 \int^0_\frac \pi 2 \ln (\sin 2 \theta)\ d\theta} + 2 \int_0^\frac \pi 2 \ln 2\ d\theta & \small \color{#3D99F6} \text{Let }\phi = 2 \theta \implies d\phi = 2 \ d\theta \\ & = {\color{#3D99F6}\int^0_\pi \ln (\sin \phi)\ d\phi} + 2 \int_0^\frac \pi 2 \ln 2\ d\theta & \small \color{#3D99F6} \text{Since }\sin \phi \text{ is symmetrical about }\frac \pi 2 \\ & = {\color{#D61F06}2 \int^0_\frac \pi 2 \ln (\sin \phi)\ d\phi} + \pi \ln 2 & \small \color{#D61F06} \text{Note that } \int^0_\frac \pi 2 \ln (\sin \theta)\ d\theta = \int^0_\frac \pi 2 \ln (\cos \theta)\ d\theta = \frac I4 \\ & = {\color{#D61F06}\frac I2} + \pi \ln 2 \\ & = 2\pi \ln 2 = \pi \ln 4 \end{aligned}

Therefore, a = 4 a=\boxed{4} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...