Mad max: Sine of Cosine

Geometry Level 2

Find the maximum value of 3 sin θ + 4 cos θ 3\sin { \theta } +4\cos { \theta } for real θ \theta .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Shivamani Patil
Jun 12, 2015

First we multiply and divide given expression by 3 2 + 4 2 \sqrt { { 3 }^{ 2 }+{ 4 }^{ 2 } } to get

3 2 + 4 2 × ( 3 sin θ 3 2 + 4 2 + 4 cos θ 3 2 + 4 2 ) \sqrt { { 3 }^{ 2 }+{ 4 }^{ 2 } } \times \left( \frac { 3\sin { \theta } }{ \sqrt { { 3 }^{ 2 }+{ 4 }^{ 2 } } } +\frac { 4\cos { \theta } }{ \sqrt { { 3 }^{ 2 }+{ 4 }^{ 2 } } } \right)

Consider above triangle.So we have sin B = 3 3 2 + 4 2 \sin { \angle B } =\frac { 3 }{ \sqrt { { 3 }^{ 2 }+{ 4 }^{ 2 } } } and cos B = 4 3 2 + 4 2 \cos { \angle B } =\frac { 4 }{ \sqrt { { 3 }^{ 2 }+{ 4 }^{ 2 } } } .

Therefore

3 2 + 4 2 × ( 3 sin θ 3 2 + 4 2 + 4 cos θ 3 2 + 4 2 ) = 3 2 + 4 2 ( sin B sin θ + cos B cos θ ) = 3 2 + 4 2 ( cos θ B ) \sqrt { { 3 }^{ 2 }+{ 4 }^{ 2 } } \times \left( \frac { 3\sin { \theta } }{ \sqrt { { 3 }^{ 2 }+{ 4 }^{ 2 } } } +\frac { 4\cos { \theta } }{ \sqrt { { 3 }^{ 2 }+{ 4 }^{ 2 } } } \right) =\sqrt { { 3 }^{ 2 }+{ 4 }^{ 2 } } \left( \sin { \angle B } \sin { \theta } +\cos { \angle B } \cos { \theta } \right) =\sqrt { { 3 }^{ 2 }+{ 4 }^{ 2 } } \left( \cos { \theta -\angle B } \right)

i.e 3 sin θ + 4 cos θ = 3 2 + 4 2 ( cos θ B ) 3\sin { \theta } +4\cos { \theta =\sqrt { { 3 }^{ 2 }+{ 4 }^{ 2 } } \left( \cos { \theta -\angle B } \right) }

Now we know

1 ( cos θ B ) 1 3 2 + 4 2 3 2 + 4 2 ( cos θ B ) 3 2 + 4 2 -1\le \left( \cos { \theta -\angle B } \right) \le 1\Rightarrow -\sqrt { { 3 }^{ 2 }+{ 4 }^{ 2 } } \le \sqrt { { 3 }^{ 2 }+{ 4 }^{ 2 } } \left( \cos { \theta -\angle B } \right) \le \sqrt { { 3 }^{ 2 }+{ 4 }^{ 2 } }

Therefore maximum value of 3 2 + 4 2 ( cos θ B ) \sqrt { { 3 }^{ 2 }+{ 4 }^{ 2 } } \left( \cos { \theta -\angle B } \right) or 3 sin θ + 4 cos θ 3\sin { \theta } +4\cos { \theta } is 3 2 + 4 2 = 5 \sqrt { { 3 }^{ 2 }+{ 4 }^{ 2 } } =5 .

Anandhu Raj
Jun 12, 2015

The max value a sin θ + b cos θ a\sin { \theta } +b\cos { \theta } is a 2 + b 2 \sqrt { { a }^{ 2 }+{ b }^{ 2 } }

Ya it is but I have showed how it is obtained in my solution.

shivamani patil - 6 years ago

Log in to reply

Yes you solve this problem from beginning and have done it nicely.

Arjya Das - 6 years ago

Log in to reply

Thank you.

shivamani patil - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...