A number theory problem by Md Zuhair

Find the number of trailing zeroes at the end of

r = 1 1000 r ! \large{\displaystyle{\prod^{1000}_{r=1} r!}}


The answer is 123124.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 29, 2017

Let the number of trailing zeros of a integer N N be denoted by n z ( N ) n_z(N) . Then we have:

n z ( r = 1 1000 r ! ) = r = 1 1000 n z ( r ! ) Note that n z ( n ! ) = k = 1 n 5 k = r = 1 1000 k = 1 r 5 k = r = 1 1000 r 5 + r = 1 1000 r 25 + r = 1 1000 r 125 + r = 1 1000 r 625 = 5 r = 1 199 r + 200 + 25 r = 1 39 r + 40 + 125 r = 1 7 r + 8 + r = 625 1000 1 = 5 × 199 × 200 2 + 200 + 25 × 39 × 40 2 + 40 + 125 × 7 × 8 2 + 8 + 1000 624 = 99700 + 19540 + 3508 + 376 = 123124 \begin{aligned} n_z \left(\prod_{r=1}^{1000} r! \right) & = \sum_{r=1}^{1000} n_z(r!) \quad \quad \quad \quad \small \color{#3D99F6} \text{Note that } n_z(n!) = \sum_{k=1}^\infty \left \lfloor \frac n{5^k} \right \rfloor \\ & = \sum_{r=1}^{1000} \sum_{k=1}^\infty \left \lfloor \frac r{5^k} \right \rfloor \\ & = {\color{#3D99F6}\sum_{r=1}^{1000} \left \lfloor \frac r{5} \right \rfloor} + {\color{#D61F06} \sum_{r=1}^{1000} \left \lfloor \frac r{25} \right \rfloor} + {\color{#3D99F6}\sum_{r=1}^{1000} \left \lfloor \frac r{125} \right \rfloor} + \color{#D61F06}\sum_{r=1}^{1000} \left \lfloor \frac r{625} \right \rfloor \\ & = {\color{#3D99F6} 5 \sum_{r=1}^{199} r + 200} + {\color{#D61F06}25 \sum_{r=1}^{39} r + 40} + {\color{#3D99F6}125 \sum_{r=1}^7 r + 8} + {\color{#D61F06} \sum_{r=625}^{1000} 1} \\ & = 5 \times \frac {199 \times 200}2 + 200 + 25 \times \frac {39 \times 40}2 + 40 + 125 \times \frac {7 \times 8}2 + 8 + 1000 - 624 \\ & = 99700 + 19540 + 3508 + 376 \\ & = \boxed{123124} \end{aligned}

Accurate solution!

Md Zuhair - 3 years, 7 months ago

Log in to reply

Yes, quite.

Chew-Seong Cheong - 3 years, 7 months ago

@Mark Hennings sir, Why did you got sum=0 for this problem? Binomial

Md Zuhair - 3 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...