Mad Trigonometry

Geometry Level 5

cos ( 756 x ) cos ( 252 x ) cos ( 1512 x ) cos ( 504 x ) = 2 \large \dfrac{\cos(756x)}{\cos(252x)}-\dfrac{\cos(1512x)}{\cos(504x)} =2

If the sum of roots of the equation above for 0 < x < 2 π 0 < x < 2\pi is of the form n π \large n\pi , find n n .


The answer is 2016.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tommy Li
Dec 23, 2016

Formula used :

cos ( 3 x ) = 4 cos 3 ( x ) 3 cos ( x ) \large \cos(3x) = 4 \cos ^ 3 (x) - 3 \cos(x)

cos 2 ( x ) = 1 + cos ( 2 x ) 2 \large \cos^2(x) = \frac{1+\cos(2x)}{2}


cos ( 756 x ) cos ( 252 x ) cos ( 1512 x ) cos ( 504 x ) = 2 \large \dfrac{\cos(756x)}{\cos(252x)}-\dfrac{\cos(1512x)}{\cos(504x)} =2

4 cos 3 ( 252 x ) 3 cos ( 252 x ) cos ( 252 x ) 4 cos 3 ( 504 x ) 3 cos ( 504 x ) cos ( 504 x ) = 2 \large \dfrac{4 \cos ^ 3 (252x) - 3 \cos(252x)}{\cos(252x)}-\dfrac{4 \cos ^ 3 (504x) - 3 \cos(504x)}{\cos(504x)} =2

4 cos 2 ( 252 x ) 4 cos 2 ( 504 x ) 3 + 3 = 2 \large 4 \cos^2(252x) -4 \cos^2(504x) -3+3 = 2

4 cos 2 ( 504 x ) + 2 cos ( 504 x ) + 2 = 2 \large -4 \cos^2(504x)+2\cos(504x)+2=2

4 cos 2 ( 504 x ) + 2 cos ( 504 x ) = 0 \large -4 \cos^2(504x)+2\cos(504x) = 0

cos ( 504 x ) = 0 \large \cos(504x) = 0 or cos ( 504 x ) = 1 2 \large \cos(504x) = \frac{1}{2}

Observe patterns :

The sum of roots of cos ( 504 x ) = 0 \large \cos(504x) = 0 for 0 < x < 2 π 0 < x < 2\pi = 2 ( 504 ) 2(504) = 1008 1008

The sum of roots of cos ( 504 x ) = 1 2 \large \cos(504x) = \frac{1}{2} for 0 < x < 2 π 0 < x < 2\pi = 2 ( 504 ) 2(504) = 1008 1008

1008 + 1008 = 2016 \large \Rightarrow 1008+1008 = 2016

Have you liked the number 2016 this year?,haha

Guillermo Templado - 4 years, 5 months ago

Log in to reply

Anyway, it's not very easy to fit 2016 in this problem and and at other problems. Great...

Guillermo Templado - 4 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...