Madness-4

Algebra Level 5

Let S n = ( x n + 1 x n ) . S_n=(x^n+\frac{1}{x^n}).

Now ( S 3 + S 1 ) ( S 7 + S 1 ) ( S 11 + S 1 ) = ( S a + S 7 ) ( S b + S 7 ) ( S c + S 7 ) (S_3+S_1)(S_7+S_1)(S_{11}+S_1)=(S_a+S_7)(S_b+S_7)(S_c+S_7)

If the equation above is always true then find the value of ( a + b + c ) . (a+b+c).

This is one of my original Madness problems .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sanjeet Raria
Jul 31, 2015

Again applying the beautiful property, S i S j = S i + j + S i j \boxed{\large S_i S_j=S_{i+j}+S_{i-j}} ( S 3 + S 1 ) ( S 7 + S 1 ) ( S 11 + S 1 ) = ( S 1 S 2 ) ( S 3 S 4 ) ( S 5 S 6 ) \Rightarrow (S_3+S_1)(S_7+S_1)(S_{11}+S_1)=(S_1S_2)(S_3S_4)(S_5S_6)

= ( S 1 S 6 ) ( S 2 S 5 ) ( S 3 S 4 ) = ( S 5 + S 7 ) ( S 3 + S 7 ) ( S 1 + S 7 ) =(S_1S_6)(S_2S_5)(S_3S_4)=(S_5+S_7)(S_3+S_7)(S_1+S_7) a + b + c = 5 + 3 + 1 = 9 \Rightarrow a+b+c=5+3+1=\boxed9

Mine solutions are not just same but identical to you:)

Aakash Khandelwal - 5 years, 10 months ago

Voted up. My method now is too long .

Niranjan Khanderia - 4 years, 11 months ago

Sir how could u prove this..................please send

Abhisek Mohanty - 4 years, 11 months ago

( S 7 + S 1 ) = ( S 1 + S 7 ) i s a l l r e a d y t h e r e . s o a = 1 ( S 3 + S 1 ) ( S 11 + S 1 ) = ( S 2 S 1 ) ( S 6 S 5 ) = ( S 1 S 6 ) ( S 2 S 5 ) = ( S 5 + S 7 ) ( S 3 + S 7 ) s o b = 5 , c = 3. a + b + c + 1 + 5 + 3 = 9. (S_7+S_1)=(S_1+S_7)~ is~ all~ ready ~there.~so~a=1\\ \therefore~(S_3+S_1)(S_{11}+S_1)=(S_2*S_1)(S_6*S_5)\\ ~~~~~~~=(S_1*S_6)(S_2*S_5)=(S_5+S_7)(S_3+S_7)~~so~b=5,~c=3.\\ a+b+c+1+5+3=\Large~~~~\color{#D61F06}{9}.

Niranjan Khanderia - 3 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...